Interference-aware clustering in cloud radio access networks

Autor: Hadi Sawaya, Karen Boulos, Steven Martin, Kinda Khawam, Marc Ibrahim, Melhem El Helou
Přispěvatelé: Ecole supérieure d'ingénieurs de Beyrouth (ESIB), Université Saint-Joseph de Beyrouth (USJ), Laboratoire d'Informatique Parallélisme Réseaux Algorithmes Distribués (LI-PaRAD), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Laboratoire de Recherche en Informatique (LRI), CentraleSupélec-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2017
Předmět:
Zdroj: CloudNet
CloudNet-IEEE International Conference on Cloud Networking
CloudNet-IEEE International Conference on Cloud Networking, Sep 2017, Prague, Czech Republic. ⟨10.1109/CloudNet.2017.8071536⟩
DOI: 10.1109/cloudnet.2017.8071536
Popis: Cloud Radio Access Network (C-RAN) is an evolution in base station architecture. The key concept is to break down the conventional base station into a Base Band Unit (BBU) and a Remote Radio Head (RRH). While BBUs are pooled in a cloud data center, RRHs are distributed across multiple sites. In this context, resource utilization can be enhanced through statistical multiplexing: many RRHs may be clustered and associated with a single BBU. In this paper, RRH clustering is formulated as a Set Partitioning Problem, considering inter-cluster interferences. Optimal and heuristic solutions are derived to reduce network power consumption with minimum throughput requirements. Simulation results show that our interference-aware solutions outperform the no-clustering method, where only one RRH is associated with each BBU, and the interference-unaware Bin Packing algorithm. Moreover, our heuristic achieves performance very close to the optimal solution.
Databáze: OpenAIRE