Integrable extensions of classical elliptic integrable systems
Autor: | M. A. Olshanetsky |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Nonlinear Sciences - Exactly Solvable and Integrable Systems Integrable system Group (mathematics) Degrees of freedom FOS: Physical sciences 37J35 Statistical and Nonlinear Physics Mathematical Physics (math-ph) Nonlinear Sciences::Exactly Solvable and Integrable Systems Exactly Solvable and Integrable Systems (nlin.SI) Mathematical Physics Spin-½ Mathematical physics |
Zdroj: | Theoretical and Mathematical Physics. 208:1061-1074 |
ISSN: | 1573-9333 0040-5779 |
DOI: | 10.1134/s0040577921080067 |
Popis: | In this article we consider two particular examples of general construction proposed in arXiv:2012.15529. We consider the integrable extensions of the classical elliptic Calogero-Moser model of N particles with spin and the integrable Euler-Arnold top related to the group SL(N,C). The extended systems has additional N-1 degrees of freedom and can be described in terms of the Darboux variables. Comment: 14 pages. Contribution in the TMP volume dedicated to the ninetieth anniversary of M.K. Polivanov's birth |
Databáze: | OpenAIRE |
Externí odkaz: |