DIRAC-KAHLER FIELDS AND THE LATTICE SHAPE DEPENDENCE OF FERMION FLAVOR
Autor: | Gockeler, M. |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1982 |
Předmět: |
Dirac-Kaehler equation
FLAVOR [FERMION] High Energy Physics::Lattice LATTICE FIELD THEORY: OPERATOR ALGEBRA SYMMETRY: LATTICE LATTICE [SYMMETRY] FERMION: FLAVOR MATHEMATICAL METHODS CONTINUUM LIMIT [LATTICE FIELD THEORY] LATTICE FIELD THEORY: CONTINUUM LIMIT ddc:530 OPERATOR ALGEBRA [LATTICE FIELD THEORY] LATTICE FIELD THEORY: TWO-DIMENSIONAL TWO-DIMENSIONAL [LATTICE FIELD THEORY] |
Zdroj: | (1983). doi:10.1007/BF01573733 |
DOI: | 10.3204/pubdb-2017-13578 |
Popis: | (1983). doi:10.1007/BF01573733 We investigate the Dirac-Kähler operator on a triangular lattice in two dimensions and show that the number of degrees of freedom which survive in the continuum limit is the same as in the case of a square lattice. |
Databáze: | OpenAIRE |
Externí odkaz: |