There is no variational characterization of the cycles in the method of periodic projections

Autor: Jean-Bernard Baillon, Patrick L. Combettes, Roberto Cominetti
Přispěvatelé: Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) (SAMM), Université Paris 1 Panthéon-Sorbonne (UP1), Université Pierre et Marie Curie - Paris 6 (UPMC), Departamento de Ingenieria Industrial [Santiago] (DII), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Předmět:
Pure mathematics
Alternating projections
47N10
Université Pierre et Marie Curie
Von Neumann algorithm
Corresponding author: P L Combettes
0211 other engineering and technologies
Proper convex function
Convex set
Laboratoire Jacques-Louis Lions
02 engineering and technology
Subderivative
01 natural sciences
75005 Paris
Combinatorics
symbols.namesake
phone: +33 1 4427 6319
FOS: Mathematics
plc@mathjussieufr
fax: +33 1 4427 7200
0101 mathematics
Dykstra's projection algorithm
Mathematics
Convex analysis
021103 operations research
010102 general mathematics
Hilbert space
65K15
sadco
Limit cycle
von Neumann algo-rithm 2010 Mathematics Subject Classification 47H09
Functional Analysis (math.FA)
Mathematics - Functional Analysis
4 place Jussieu
Convex optimization
symbols
Best approximation
France
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
Convex function
Analysis
47H10
Zdroj: Journal of Functional Analysis
Journal of Functional Analysis, 2012, 262, pp.400-408. ⟨10.1016/j.jfa.2011.09.002⟩
Journal of Functional Analysis, 2012, 262 (1), pp.400-408. ⟨10.1016/j.jfa.2011.09.002⟩
Journal of Functional Analysis, Elsevier, 2012, 262 (1), pp.400-408. ⟨10.1016/j.jfa.2011.09.002⟩
Journal of Functional Analysis, Elsevier, 2012, 262, pp.400-408. ⟨10.1016/j.jfa.2011.09.002⟩
JOURNAL OF FUNCTIONAL ANALYSIS
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
ISSN: 0022-1236
1096-0783
DOI: 10.1016/j.jfa.2011.09.002
Popis: International audience; The method of periodic projections consists in iterating projections onto m closed convex subsets of a Hilbert space according to a periodic sweeping strategy. In the presence of m ≥ 3 sets, a long-standing question going back to the 1960s is whether the limit cycles obtained by such a process can be characterized as the minimizers of a certain functional. In this paper we answer this question in the negative. Projection algorithms that minimize smooth convex functions over a product of convex sets are also discussed.
Databáze: OpenAIRE