Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357)

Autor: Früh-Green G.L.[1], Orcutt B.N.[2], Rouméjon S.[1], Lilley M.D.[3], Morono Y.[4], Cotterill C.[5], Green S.[5], Escartin J.[6], John B.E.[7], McCaig A.M.[8], Cannat M.[6], Ménez B.[6], Schwarzenbach E.M.[9], Williams M.J.[10, Morgan S.[11], Lang S.Q.[12], Schrenk M.O.[13], Brazelton W.J.[14], Akizawa N.[15, Boschi C.[16], Dunkel K.G.[17], Quéméneur M.[18], Whattam S.A.[19, Mayhew L.[20], Harris M.[21, Bayrakci G.[21], Behrmann J.-H.[22], Herrero-Bervera E.[23], Hesse K.[24], Liu H.-Q.[25], Ratnayake A.S.[26, Twing K.[13, 14], Weis D.[27], Zhao R.[28], Bilenker L.[27]
Přispěvatelé: Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), British Geological Survey [Edinburgh], British Geological Survey (BGS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Physics of Geological Processes [Oslo] (PGP), Department of Physics [Oslo], Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO)-Faculty of Mathematics and Natural Sciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO)-Department of Geosciences [Oslo], University of Oslo (UiO)-University of Oslo (UiO), Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Hawaii Institute of Geophysics and Planetology (HIGP), University of Hawai‘i [Mānoa] (UHM), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Université Paris Diderot - Paris 7 (UPD7)-IPG PARIS-Institut national des sciences de l'Univers (INSU - CNRS), Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), University of Wyoming (UW), Department of Geology [Leicester], University of Leicester, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), King Fahad University, High Temp Resistant Polymers & Composites Key Lab, Inst Microelect & Solid State Elect, Chengdu University of Technology (CDUT), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Lithos
Lithos, Elsevier, 2018, 323, pp.137-155. ⟨10.1016/j.lithos.2018.09.012⟩
Lithos (Oslo. Print) 323 (2018): 137–155. doi:10.1016/j.lithos.2018.09.012
info:cnr-pdr/source/autori:Früh-Green G.L.[1], Orcutt B.N.[2], Rouméjon S.[1], Lilley M.D.[3], Morono Y.[4], Cotterill C.[5], Green S.[5], Escartin J.[6], John B.E.[7], McCaig A.M.[8], Cannat M.[6], Ménez B.[6], Schwarzenbach E.M.[9], Williams M.J.[10,a], Morgan S.[11], Lang S.Q.[12], Schrenk M.O.[13], Brazelton W.J.[14], Akizawa N.[15,b], Boschi C.[16], Dunkel K.G.[17], Quéméneur M.[18], Whattam S.A.[19,c], Mayhew L.[20], Harris M.[21,d], Bayrakci G.[21], Behrmann J.-H.[22], Herrero-Bervera E.[23], Hesse K.[24], Liu H.-Q.[25], Ratnayake A.S.[26,e], Twing K.[13,14], Weis D.[27], Zhao R.[28], Bilenker L.[27]/titolo:Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357)/doi:10.1016%2Fj.lithos.2018.09.012/rivista:Lithos (Oslo. Print)/anno:2018/pagina_da:137/pagina_a:155/intervallo_pagine:137–155/volume:323
Lithos, 323 . pp. 137-155.
Lithos, 2018, 323, pp.137-155. ⟨10.1016/j.lithos.2018.09.012⟩
ISSN: 0024-4937
Popis: Highlights • Seabed rock drills and real-time fluid monitoring for first time in ocean drilling • First time recovery of continuous sequences along oceanic detachment fault zone • Highly heterogeneous rock type and alteration in shallow detachment fault zone • High methane and hydrogen concentrations in Atlantis Massif shallow basement • Oceanic serpentinites potentially provide important niches for microbial life Abstract IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30°N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west–east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life.
Databáze: OpenAIRE