Curvature estimates for submanifolds immersed into horoballs and horocylinders
Autor: | Jorge H. de Lira, Alberto G. Setti, G. Pacelli Bessa, Stefano Pigola |
---|---|
Přispěvatelé: | Bessa G., P, de Lira Jorge, H, Pigola, S, Setti Alberto, G |
Rok vydání: | 2015 |
Předmět: |
Mathematics - Differential Geometry
Horoball Hessian matrix Comparison theorem Curvature Mathematical proof symbols.namesake FOS: Mathematics Mathematics::Metric Geometry Sectional curvature Busemann function Cartan–Hadamard manifolds Mathematics::Symplectic Geometry Horoballs Mathematics Cartan–Hadamard manifold Curvature estimates Submanifolds Applied Mathematics Mathematical analysis Curvature estimates Submanifolds Cartan–Hadamard manifolds Horoballs Horocylinders Horocylinders Manifold Submanifold Differential Geometry (math.DG) symbols Curvature estimate Mathematics::Differential Geometry Analysis |
Zdroj: | Journal of Mathematical Analysis and Applications. 431:1000-1007 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2015.06.010 |
Popis: | We prove mean curvature estimates and a Jorge-Koutroufiotis type theorem for submanifolds confined into either a horocylinder of N X L or a horoball of N, where N is a Cartan-Hadamard manifold with pinched curvature. Thus, these submanifolds behave in many respects like submanifolds immersed into compact balls and into cylinders over compact balls. The proofs rely on the Hessian comparison theorem for the Busemann function. To appear in Journal of Mathematical Analysis and Applications |
Databáze: | OpenAIRE |
Externí odkaz: |