Curvature estimates for submanifolds immersed into horoballs and horocylinders

Autor: Jorge H. de Lira, Alberto G. Setti, G. Pacelli Bessa, Stefano Pigola
Přispěvatelé: Bessa G., P, de Lira Jorge, H, Pigola, S, Setti Alberto, G
Rok vydání: 2015
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 431:1000-1007
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2015.06.010
Popis: We prove mean curvature estimates and a Jorge-Koutroufiotis type theorem for submanifolds confined into either a horocylinder of N X L or a horoball of N, where N is a Cartan-Hadamard manifold with pinched curvature. Thus, these submanifolds behave in many respects like submanifolds immersed into compact balls and into cylinders over compact balls. The proofs rely on the Hessian comparison theorem for the Busemann function.
To appear in Journal of Mathematical Analysis and Applications
Databáze: OpenAIRE