Infinite approximate subgroups of soluble Lie groups
Autor: | Simon Machado |
---|---|
Přispěvatelé: | Machado, S [0000-0002-1787-6864], Apollo - University of Cambridge Repository, Machado, Simon [0000-0002-1787-6864] |
Rok vydání: | 2022 |
Předmět: |
Pure mathematics
Lie groups General Mathematics Lie group 4904 Pure Mathematics Group Theory (math.GR) Approximate subgroups Linear algebraic groups Article 05E15 Mathematics::Group Theory FOS: Mathematics 49 Mathematical Sciences Approximate lattices 22E99 Mathematics - Group Theory 22E40 Mathematics Structured program theorem |
Popis: | We study infinite approximate subgroups of soluble Lie groups. We show that approximate subgroups are close, in a sense to be defined, to genuine connected subgroups. Building upon this result we prove a structure theorem for approximate lattices in soluble Lie groups. This extends to soluble Lie groups a theorem about quasi-crystals due to Yves Meyer. |
Databáze: | OpenAIRE |
Externí odkaz: |