Algebraic Hopf invariants and rational models for mapping spaces

Autor: Felix Wierstra
Rok vydání: 2016
Předmět:
DOI: 10.48550/arxiv.1612.07762
Popis: In this paper we will define an invariant $mc_{\infty}(f)$ of maps $f:X \rightarrow Y_{\mathbb{Q}}$ between a finite CW-complex and a rational space $Y_{\mathbb{Q}}$. We prove that this invariant is complete, i.e. $mc_{\infty}(f)=mc_{\infty}(g)$ if an only if $f$ and $g$ are homotopic. We will also construct an $L_{\infty}$-model for the based mapping space $Map_*(X,Y_{\mathbb{Q}})$ from a $C_{\infty}$-coalgebra and an $L_{\infty}$-algebra.
Comment: Improved certain sections of the paper, corrected some errors. 18 pages
Databáze: OpenAIRE