Study of the roto-orbital motion using intermediaries: numerical experiments
Autor: | Daniel J. Scheeres, Josué Cardoso dos Santos, Sebastián Ferrer |
---|---|
Přispěvatelé: | Universidade Estadual Paulista (Unesp), Israel Institute of Technology (Technion), Universidad de Murcia, University of Colorado |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
010504 meteorology & atmospheric sciences
Integrable system Rotational symmetry Perturbation (astronomy) Orbital eccentricity Perturbation theory 01 natural sciences Elimination of the parallax Gravitational field Total angular momentum quantum number 0103 physical sciences 010303 astronomy & astrophysics Mathematical Physics 0105 earth and related environmental sciences Physics Applied Mathematics Astronomy and Astrophysics Rigid body Computational Mathematics Classical mechanics Space and Planetary Science Modeling and Simulation Orbital motion Roto-orbital dynamics Astrophysics::Earth and Planetary Astrophysics Intermediaries |
Zdroj: | Scopus Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP |
ISSN: | 2017-8727 |
Popis: | Made available in DSpace on 2019-10-06T15:45:01Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-06-01 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Ministerio de Economía y Competitividad Fundación Séneca The purpose of the present study is to test two recently proposed integrable models to study the roto-orbital motion of an axisymmetric rigid body, considering this body under the influence of a central gravitational field. Based on the concept of intermediary, both models are treated in Hamiltonian formalism, as perturbation of the Keplerian–Eulerian motion, using canonical variables associated with the total angular momentum. Parameters are introduced to visualize possibilities for different applications; nevertheless, we concentrate on the binary asteroid-type dynamics. Numerical experiments compare the two intermediaries with respect to the original model. Several values for attitude, shape, orbital eccentricity and distance are considered for systems with a slow-rotating axisymmetric rigid body in an eccentric relative orbit, i.e., with significant disturbing effects. In general, both models present good precision in wide regions of the dynamical parameters spaces defined. Department of Physics/Group of Orbital Dynamics and Planetology São Paulo State University (UNESP) Asher Space Research Institute Israel Institute of Technology (Technion) Space Dynamics Group DITEC Facultad Informática Universidad de Murcia Ann H.J. Smead Department of Aerospace Engineering Science University of Colorado Department of Physics/Group of Orbital Dynamics and Planetology São Paulo State University (UNESP) FAPESP: 2013/26652-6 FAPESP: 2015/18881-9 Ministerio de Economía y Competitividad: ESP2017-87271-P Fundación Séneca: MTM2015-64095-P |
Databáze: | OpenAIRE |
Externí odkaz: |