The absence of the Efimov effect in systems of one- and two-dimensional particles

Autor: Simon Barth, Andreas Bitter, Semjon Vugalter
Rok vydání: 2021
Předmět:
Zdroj: Journal of Mathematical Physics. 62:123502
ISSN: 1089-7658
0022-2488
DOI: 10.1063/5.0033524
Popis: We study virtual levels of $N$-particle Schr\"odinger operators and prove that if the particles are one-dimensional and $N\ge 3$, then virtual levels at the bottom of the essential spectrum correspond to eigenvalues. The same is true for two-dimensional particles if $N\ge 4$. These results are applied to prove the non-existence of the Efimov effect in systems of $N\ge 4$ one-dimensional or $N\ge 5$ two-dimensional particles.
Comment: 51 pages
Databáze: OpenAIRE