The absence of the Efimov effect in systems of one- and two-dimensional particles
Autor: | Simon Barth, Andreas Bitter, Semjon Vugalter |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Journal of Mathematical Physics. 62:123502 |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/5.0033524 |
Popis: | We study virtual levels of $N$-particle Schr\"odinger operators and prove that if the particles are one-dimensional and $N\ge 3$, then virtual levels at the bottom of the essential spectrum correspond to eigenvalues. The same is true for two-dimensional particles if $N\ge 4$. These results are applied to prove the non-existence of the Efimov effect in systems of $N\ge 4$ one-dimensional or $N\ge 5$ two-dimensional particles. Comment: 51 pages |
Databáze: | OpenAIRE |
Externí odkaz: |