Measuring phenology uncertainty with large scale image processing

Autor: Guilherme Rezende Alles, Lucas Mello Schnorr, Jean-Marc Vincent, Shin Nagai, João Luiz Dihl Comba
Přispěvatelé: Instituto de Informática da UFRGS (UFRGS), Universidade Federal do Rio Grande do Sul [Porto Alegre] (UFRGS), Performance analysis and optimization of LARge Infrastructures and Systems (POLARIS), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Ecological Informatics
Ecological Informatics, 2020, 59, pp.101109. ⟨10.1016/j.ecoinf.2020.101109⟩
Ecological Informatics, Elsevier, 2020, 59, pp.101109. ⟨10.1016/j.ecoinf.2020.101109⟩
ISSN: 1574-9541
DOI: 10.1016/j.ecoinf.2020.101109⟩
Popis: International audience; One standard method to capture data for phenological studies is with digital cameras, taking periodic pictures of vegetation. The large volume of digital images introduces the opportunity to enrich these studies by incorporating big data techniques. The new challenges, then, are to efficiently process large datasets and produce insightful information by controlling noise and variability. On these grounds, the contributions of this paper are the following. (a) A histogram-based visualization for large scale phenological data. (b) Phenological metrics based on the HSV color space, that enhance such histogram-based visualization. (c) A mathematical model to tackle the natural variability and uncertainty of phenological images. (d) The implementation of a parallel workflow to process a large amount of collected data efficiently. We validate these contributions with datasets taken from the Phenological Eyes Network (PEN), demonstrating the effectiveness of our approach. The experiments presented here are reproducible with the provided companion material
Databáze: OpenAIRE