Implementation of the AdaBoost Algorithm for Large Scale Distributed Environments: Comparing JavaSpace and MPJ

Autor: Stéphane Genaud, Virginie Galtier, Stéphane Vialle
Přispěvatelé: SUPELEC-Campus Metz, Ecole Supérieure d'Electricité - SUPELEC (FRANCE), Algorithms for the Grid (ALGORILLE), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Grid'5000
Rok vydání: 2009
Předmět:
Zdroj: ICPADS
Fifteenth International Conference on Parallel and Distributed Systems (ICPADS'09)
Fifteenth International Conference on Parallel and Distributed Systems (ICPADS'09), Dec 2009, Shenzhen, China. ⟨10.1109/ICPADS.2009.67⟩
DOI: 10.1109/icpads.2009.67
Popis: International audience; This paper presents the parallelization of a machine learning method, called the adaboost algorithm. The parallel algorithm follows a dynamically load-balanced master-worker strategy, which is parameterized by the granularity of the tasks distributed to workers. We first show the benefits of this version with heterogeneous processors. Then, we study the application in a real, geographically distributed environment, hence adding network latencies to the execution. Performances of the application using more than a hundred processes are analyzed in both JavaSpace and {\pmpi}. We therefore present an head-to-head comparison of two parallel programming models. We study for each case the granularities yielding the best performance. We show that current network technologies enable to obtain interesting speedups in many situations for such an application, even when using a virtual shared memory paradigm in a large-scale distributed environment.
Databáze: OpenAIRE