The immunogenicity and antigenicity of lipid A are influenced by its physicochemical state and environment

Autor: H M Kuhn, Shoichi Kusumoto, Lore Brade, Helmut Brade, I Macher, Ernst Th. Rietschel, Klaus Brandenburg
Rok vydání: 1987
Předmět:
Zdroj: Infection and Immunity. 55:2636-2644
ISSN: 1098-5522
0019-9567
Popis: We investigated the immunogenicity and antigenicity of synthetic lipid A and partial structures thereof. Included in the study were compounds which varied in the position of phosphate (1-mono-, 4'-mono-, and 1,4'-bisphosphates) and in the acylation (type, number, and distribution of fatty acids) and, in the case of monosaccharide compounds, the nature of the backbone sugar (D-glucosamine, D-glucose, 3-amino-3-deoxy-D-glucose, and 2,3-diamino-2,3-dideoxy-D-glucose). With the aid of the passive-hemolysis and passive-hemolysis-inhibition assays and by absorption experiments, five distinct antibody specificities were detected in polyclonal rabbit antisera raised against sheep erythrocyte-coated lipid A and lipid A incorporated into the membrane of liposomes (liposome-incorporated immunogens). Three antibody specificities reacted with disaccharide antigens specific for a 1-mono-, 4'-mono-, and 1,4'-bisphosphorylated beta-1,6-linked D-glucosamine disaccharide. Two antibodies reacted with either 1- or 4-phosphates of acylated D-gluco-configured monosaccharides and exhibited no cross-reaction with each other. However, they cross-reacted with disaccharide antigens with phosphate groups in the appropriate positions. We found that the physicochemical state and the environment of lipid A modulated its immunoreactivity. The immunogenicity was best expressed by erythrocyte-coated and liposome-incorporated immunogens. The antigenicity of lipid A was also greatly influenced by its physical surroundings. The reaction pattern of the above antibodies was highly specific in the hemolysis assay and in absorption experiments (the antibody reacted with antigen embedded in a cell membrane), whereas some cross-reactivities were observed in inhibition studies (the antibody reacts with antigen in aqueous solution). By using liposome-incorporated antigens as inhibitors, nonspecific reactions were avoided and specific ones were enhanced. Thus the antibodies described above against lipid A recognize epitopes in the hydrophilic backbone, the exposure of which depends on the intrinsic physicochemical properties of lipid A on the one hand and the physical environment on the other.
Databáze: OpenAIRE