Normes cyclotomiques naïves et unités logarithmiques

Autor: Jean-François Jaulent
Přispěvatelé: Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: francouzština
Rok vydání: 2017
Předmět:
Zdroj: Archiv der Mathematik
Archiv der Mathematik, Springer Verlag, 2017, Archiv der Math., 108, pp.545-554
ISSN: 0003-889X
1420-8938
Popis: We compute the Z-rank of the subgroup of elements of the multiplicative group of a number field K that are norms from every finite level of the cyclotomic Z{\ell}-extension of K. Thus we compare its {\ell}-adification with the group of logarithmic units of K. By the way we point out an easy proof of the Gross-Kuz'min conjecture for {\ell}-undecomposed extensions of abelian fields.
Comment: in French
Databáze: OpenAIRE