Normes cyclotomiques naïves et unités logarithmiques
Autor: | Jean-François Jaulent |
---|---|
Přispěvatelé: | Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | francouzština |
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Conjecture Mathematics - Number Theory Multiplicative group Group (mathematics) General Mathematics 010102 general mathematics Gross-Kuz'min conjecture Rank (differential topology) Iwasawa theory Algebraic number field Logarithmic units 01 natural sciences [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] 11R23 0103 physical sciences logarithmic units cyclotomic norms 010307 mathematical physics 0101 mathematics Abelian group Mathematics |
Zdroj: | Archiv der Mathematik Archiv der Mathematik, Springer Verlag, 2017, Archiv der Math., 108, pp.545-554 |
ISSN: | 0003-889X 1420-8938 |
Popis: | We compute the Z-rank of the subgroup of elements of the multiplicative group of a number field K that are norms from every finite level of the cyclotomic Z{\ell}-extension of K. Thus we compare its {\ell}-adification with the group of logarithmic units of K. By the way we point out an easy proof of the Gross-Kuz'min conjecture for {\ell}-undecomposed extensions of abelian fields. Comment: in French |
Databáze: | OpenAIRE |
Externí odkaz: |