Interdigital Capacitor-Based Passive LC Resonant Sensor for Improved Moisture Sensing
Autor: | Sanghun Song, Hyungjun Chang, Yongshik Lee, Taejun Lim, Byung Jae Kwak, Kristian Chavdarov Dimitrov |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Materials science
Letter moisture sensing interdigital capacitor lcsh:Chemical technology Biochemistry Analytical Chemistry law.invention remote sensing Quality (physics) law Electric field Frequency offset Radio-frequency identification lcsh:TP1-1185 sensor tag Electrical and Electronic Engineering fringing capacitance Instrumentation RFID Moisture business.industry Detector Atomic and Molecular Physics and Optics Capacitor Optoelectronics business Sensitivity (electronics) |
Zdroj: | Sensors (Basel, Switzerland) Sensors, Vol 20, Iss 6306, p 6306 (2020) |
ISSN: | 1424-8220 |
Popis: | Herein, a passive low-profile moisture sensor design based on radio frequency identification (RFID) technology is proposed. The sensor consists of an LC resonant loop, and the sensing mechanism is based on the fringing electric field generated by the capacitor in the circuit. A standard planar inductor and a two-layer interdigital capacitor (IDC) with a significantly higher fringing capacitance compared to that of a conventional parallel plate capacitor (PPC) are used, resulting in improved frequency offset and sensitivity of the sensor. Furthermore, a sensor tag was designed to operate at an 8.2 MHz electronic article surveillance (EAS) frequency range and the corresponding simulation results were experimentally verified. The IDC- and PPC-based capacitor designs were comprehensively compared. The proposed IDC sensor exhibits enhanced sensitivity of 10% in terms of frequency offset that is maintained over time, increased detection distance of 5%, and more than 20% increase in the quality factor compared to sensors based on PPC. The sensor’s performance as a urine detector was experimentally qualified. Additionally, it was shown experimentally that the proposed sensor shows a faster response to moisture. Both simulation and experimental data are presented and elucidated herein. |
Databáze: | OpenAIRE |
Externí odkaz: |