Site-specific vibrational dynamics of the CD3ζ membrane peptide using heterodyned two-dimensional infrared photon echo spectroscopy
Autor: | Eric C. Fulmer, Isaiah T. Arkin, Martin T. Zanni, Itamar Kass, Amber T. Krummel, Prabuddha Mukherjee |
---|---|
Rok vydání: | 2004 |
Předmět: |
Models
Molecular CD3 Complex Spectrophotometry Infrared Double bond Protein Conformation Infrared Dephasing Lipid Bilayers Population General Physics and Astronomy Infrared spectroscopy Vibration Laser linewidth Nuclear magnetic resonance Computer Simulation Physical and Theoretical Chemistry education Spectroscopy chemistry.chemical_classification Photons education.field_of_study Membrane Proteins Pulse sequence Models Chemical chemistry Liposomes Peptides |
Zdroj: | The Journal of Chemical Physics. 120:10215-10224 |
ISSN: | 1089-7690 0021-9606 |
DOI: | 10.1063/1.1718332 |
Popis: | Heterodyned two-dimensional infrared (2D IR) spectroscopy has been used to study the amide I vibrational dynamics of a 27-residue peptide in lipid vesicles that encompasses the transmembrane domain of the T-cell receptor CD3zeta. Using 1-(13)C[Double Bond](18)O isotope labeling, the amide I mode of the 49-Leucine residue was spectroscopically isolated and the homogeneous and inhomogeneous linewidths of this mode were measured by fitting the 2D IR spectrum collected with a photon echo pulse sequence. The pure dephasing and inhomogeneous linewidths are 2 and 32 cm(-1), respectively. The population relaxation time of the amide I band was measured with a transient grating, and it contributes 9 cm(-1) to the linewidth. Comparison of the 49-Leucine amide I mode and the amide I band of the entire CD3zeta peptide reveals that the vibrational dynamics are not uniform along the length of the peptide. Possible origins for the large amount of inhomogeneity present at the 49-Leucine site are discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |