On the spectra and eigenspaces of the universal adjacency matrices of arbitrary lifts of graphs

Autor: Dalfó, C., Fiol, M. A., Pavlíková, S., Širáň, J.
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Rok vydání: 2022
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Linear Multilinear Algebra
ISSN: 1563-5139
0308-1087
DOI: 10.1080/03081087.2022.2042174
Popis: The universal adjacency matrix U of a graph Γ, with adjacency matrix A, is a linear combination of A, the diagonal matrix D of vertex degrees, the identity matrix I, and the all-1 matrix J with real coefficients, that is, U=c1A+c2D+c3I+c4J, with ci∈R and c1≠0. Thus, in particular cases, U may be the adjacency matrix, the Laplacian, the signless Laplacian, and the Seidel matrix. In this paper, we develop a method for determining the universal spectra and bases of all the corresponding eigenspaces of arbitrary lifts of graphs (regular or not). As an example, the method is applied to give an efficient algorithm to determine the characteristic polynomial of the Laplacian matrix of the symmetric squares of odd cycles, together with closed formulas for some of their eigenvalues. The first author has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 734922. The research of the two first authors is partially supported by AGAUR from the Catalan Government under project 2017SGR1087 and by MICINN from the Spanish Government under project PGC2018-095471-B-I00. The research of the first author has also been supported by MICINN from the Spanish Government under project MTM2017-83271-R. The third and fourth authors acknowledge support from the APVV Research Grants 15-0220 and 17-0428, and the VEGA Research Grants 1/0142/17 and 1/0238/19.
Databáze: OpenAIRE