Threshold phenomena for high-dimensional random polytopes

Autor: Julian Grote, Nicola Turchi, Daniel Temesvari, Gilles Bonnet, Giorgos Chasapis
Přispěvatelé: Bonnet, G, Chasapis, G, Grote, J, Temesvari, D, Turchi, N
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Popis: Let $X_1,\ldots,X_N$, $N>n$, be independent random points in $\mathbb{R}^n$, distributed according to the so-called beta or beta-prime distribution, respectively. We establish threshold phenomena for the volume, intrinsic volumes, or more general measures of the convex hulls of these random point sets, as the space dimension $n$ tends to infinity. The dual setting of polytopes generated by random halfspaces is also investigated.
26 pages
Databáze: OpenAIRE