Assessing functional diversity in the field - methodology matters!

Autor: Sandra Lavorel, Anne Bonis, Josh Dorrough, Nicholas S.G. Williams, Fabien Quétier, Karl Grigulis, Denys Garden, Sandra Berman, Aurélie Thébault, Sue McIntyre
Přispěvatelé: Laboratoire d'Ecologie Alpine (LECA), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Station alpine Joseph Fourier - UMS 3370 (SAJF), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), CSIRO Sustainable Ecosystems, Royal Botanic Gardens, Australian Research Centre for Urban Ecology, Department of Sustainability and Environment, Arthur Rylah Institute for Environmental Research (ARI), Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO), Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Université Joseph Fourier - Grenoble 1 (UJF)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Department of Sustainability and Environment [Heidelberg , Victoria], Université de Rennes (UR)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2008
Předmět:
0106 biological sciences
leaf traits
assessments
Environmental change
Population
[SDV.BID]Life Sciences [q-bio]/Biodiversity
Biology
010603 evolutionary biology
01 natural sciences
land-use change
vegetation
Statistics
Trait-based approach
climatic gradient
Ecosystem
Cwm
education
[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces
environment

Relative species abundance
Ecology
Evolution
Behavior and Systematics

2. Zero hunger
ecosystem
[SDV.EE]Life Sciences [q-bio]/Ecology
environment

education.field_of_study
function
abundance
rapid assessments
Ecology
grasslands
Community structure
methodology
15. Life on land
communities
rapid
plant traits
subalpine grassland
Trait
plant functional diversity
community structure
[SDE.BE]Environmental Sciences/Biodiversity and Ecology
Functional divergence
010606 plant biology & botany
Zdroj: Functional Ecology
Functional Ecology, Wiley, 2008, 22 (1), pp.134-147. ⟨10.1111/j.1365-2435.2007.01339.x⟩
Functional Ecology, 2008, 22 (1), pp.134-147. ⟨10.1111/j.1365-2435.2007.01339.x⟩
ISSN: 0269-8463
1365-2435
DOI: 10.1111/j.1365-2435.2007.01339.x⟩
Popis: International audience; 1. Interpreting the functional diversity of vegetation is important in unravelling the relationship between environmental change, community composition and ecosystem processes. Functional diversity is the range and distribution of functional trait values in a community. It can be described, among other indicators, by community-level weighted means of trait values (CWM) and functional divergence. Standard methods exist for trait measurements but not for assessments of CWM and functional divergence in the field. No research has addressed the effects of different methods of estimating relative abundances, nor the need to estimate traits at individual, population or species level, or whether methods could be used that bypass taxonomy all together. 2. This study reviews and evaluates plot-level assessment methods of functional diversity in herbaceous vegetation. We asked: (i) Should the objective of the study influence the method for estimating relative abundance? (ii) What are the strengths and limitations of intensive vs. ‘rapid' approaches, and when should either be applied? (iii) Are taxon-free methods robust in comparison to taxon-explicit methods of trait measurement? Under what circumstances might they be applied? 3. Our review of published studies that have measured functional diversity in the field showed that the choice of metric has not generally taken into account the link between the metric and the functions of interest, and that vegetation cover has been most widely used, regardless of study purpose. 4. We compared quantitatively in subalpine grasslands three methods for quantification of species abundances plus one taxon-free method. We found that: (i) data base trait values were robust across years for a diverse set of dominant species; (ii) CWM have little sensitivity to method for estimating relative abundances; this sensitivity also depends on traits, for example, seed mass results were less stable than leaf traits and heights; (iii) robust estimates of CWM were obtained from visual estimates of species ranks and biomass using a dry-weight ranking method (BOTANAL), whereas functional divergence was more sensitive to method; and (iv) the taxon-free method should be treated with more caution and performed particularly poorly for estimates of functional divergence. 5. We conclude that methodology can affect estimates of functional diversity. Although care should be taken in the choice of method and interpretation of results, rapid methods often offer promising avenues for sampling larger areas and/or repeated measures.
Databáze: OpenAIRE