A conjugate gradient like method for p-norm minimization in functional spaces
Autor: | Claudio Estatico, Serge Gratton, Flavia Lenti, David Titley-Peloquin |
---|---|
Přispěvatelé: | Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Università degli Studi di Genova - UNIGE (ITALY), Université McGill (CANADA), Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France) |
Rok vydání: | 2017 |
Předmět: |
Arithmétique des ordinateurs
Iterative regularization Iterative method Applied Mathematics Mathematical analysis Banach space Hilbert space Inverse 010103 numerical & computational mathematics Conjugate gradient method 01 natural sciences Regularization (mathematics) Continuous linear operator 010101 applied mathematics Combinatorics Banach spaces Computational Mathematics symbols.namesake symbols 0101 mathematics Linear combination Mathematics |
Zdroj: | Numerische Mathematik. 137:895-922 |
ISSN: | 0945-3245 0029-599X |
DOI: | 10.1007/s00211-017-0893-7 |
Popis: | We develop an iterative algorithm to recover the minimum p-norm solution of the functional linear equation $$Ax = b,$$ where $$A: \mathcal {X}\longrightarrow \mathcal {Y}\,$$ is a continuous linear operator between the two Banach spaces $$\mathcal {X}= L^p$$ , $$1< p < 2$$ , and $$\mathcal {Y}= L^r$$ , $$r > 1$$ , with $$x \in \mathcal {X}$$ and $$b \in \mathcal {Y}$$ . The algorithm is conceived within the same framework of the Landweber method for functional linear equations in Banach spaces proposed by Schopfer et al. (Inverse Probl 22:311–329, 2006). Indeed, the algorithm is based on using, at the n-th iteration, a linear combination of the steepest current “descent functional” $$A^* J \left( b - A x_n \right) $$ and the previous descent functional, where J denotes a duality map of the Banach space $$\mathcal {Y}$$ . In this regard, the algorithm can be viewed as a generalization of the classical conjugate gradient method on the normal equations in Hilbert spaces. We demonstrate that the proposed iterative algorithm converges strongly to the minimum p-norm solution of the functional linear equation $$Ax = b$$ and that it is also a regularization method, by applying the discrepancy principle as stopping rule. According to the geometrical properties of $$L^p$$ spaces, numerical experiments show that the method is fast, robust in terms of both restoration accuracy and stability, promotes sparsity and reduces the over-smoothness in reconstructing edges and abrupt intensity changes. |
Databáze: | OpenAIRE |
Externí odkaz: |