Aggregate Formation of Surface-Modified Nanoparticles in Solvents and Polymer Nanocomposites

Autor: Thomas Chaussée, Natalia Meissner, Thomas Bizien, Laurent Guy, Dafne Musino, Anne-Caroline Genix, Julian Oberdisse, Radoslaw Kozak
Přispěvatelé: Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2018
Předmět:
Zdroj: Langmuir
Langmuir, American Chemical Society, 2018, 34 (9), pp.3010-3020. ⟨10.1021/acs.langmuir.7b03932⟩
ISSN: 1520-5827
0743-7463
DOI: 10.1021/acs.langmuir.7b03932⟩
Popis: International audience; A new method based on the combination of small-anglescattering, reverse Monte Carlo simulations, and an aggregate recognition algorithm is proposed to characterize the structure of nanoparticle suspensions in solvents and polymer nanocomposites, allowing detailedstudies of the impact of different nanoparticle surface modifications.Experimental small-angle scattering is reproduced using simulated annealing of configurations of polydisperse particles in a simulation box compatible with the lowest experimental q-vector. Then, properties of interest likeaggregation states are extracted from these configurations and averaged. This approach has been applied to silane surface-modified silica nanoparticles with different grafting groups, in solvents and after casting into polymer matrices.It is shown that the chemistry of the silane function, in particular mono- or trifunctionality possibly related to patch formation, affects the dispersion state in a given medium, in spite of an unchanged alkylchain length. Our approach may be applied to study any dispersion or aggregation state of nanoparticles. Concerningnanocomposites, the method has potential impact on the design of new formulations allowing controlled tuning of nanoparticle dispersion.
Databáze: OpenAIRE