Dirichlet to Neumann operator for Abelian Yang–Mills gauge fields
Autor: | Homero G. Díaz-Marín |
---|---|
Rok vydání: | 2017 |
Předmět: |
Geometric quantization
Physics and Astronomy (miscellaneous) 010308 nuclear & particles physics Operator (physics) 010102 general mathematics FOS: Physical sciences Boundary (topology) Yang–Mills existence and mass gap Mathematical Physics (math-ph) Space (mathematics) 58J32 49S05 58E15 70S15 01 natural sciences High Energy Physics::Theory 0103 physical sciences Boundary value problem 0101 mathematics Abelian group Mathematics::Symplectic Geometry Mathematical Physics Symplectic geometry Mathematical physics Mathematics |
Zdroj: | International Journal of Geometric Methods in Modern Physics. 14:1750153 |
ISSN: | 1793-6977 0219-8878 |
DOI: | 10.1142/s0219887817501535 |
Popis: | We consider the Dirichlet to Neumann operator for abelian Yang- Mills boundary conditions. We treat the case for space-time manifolds with general smooth boundary components. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge. Thus we prepare a suitable scenario for geometric quantization of abelian gauge fields following a symplectic reduction procedure in a Lagrangian setting. Keywords: gauge fields; variational boundary value problems; Hodge theory; Dirichlet to Neumann operator Subject classification: Yang-Mills theory, topological field theo- ries, methods from differential geometry |
Databáze: | OpenAIRE |
Externí odkaz: |