Dirichlet to Neumann operator for Abelian Yang–Mills gauge fields

Autor: Homero G. Díaz-Marín
Rok vydání: 2017
Předmět:
Zdroj: International Journal of Geometric Methods in Modern Physics. 14:1750153
ISSN: 1793-6977
0219-8878
DOI: 10.1142/s0219887817501535
Popis: We consider the Dirichlet to Neumann operator for abelian Yang- Mills boundary conditions. We treat the case for space-time manifolds with general smooth boundary components. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge. Thus we prepare a suitable scenario for geometric quantization of abelian gauge fields following a symplectic reduction procedure in a Lagrangian setting.
Keywords: gauge fields; variational boundary value problems; Hodge theory; Dirichlet to Neumann operator Subject classification: Yang-Mills theory, topological field theo- ries, methods from differential geometry
Databáze: OpenAIRE