Non-arithmetic lattices and the Klein quartic
Autor: | Martin Deraux |
---|---|
Přispěvatelé: | Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA) |
Rok vydání: | 2017 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics Automorphism group Applied Mathematics General Mathematics 010102 general mathematics Klein quartic Geometric Topology (math.GT) 01 natural sciences Mathematics - Algebraic Geometry Mathematics - Geometric Topology Mathematics::Algebraic Geometry Differential Geometry (math.DG) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] 0103 physical sciences FOS: Mathematics 010307 mathematical physics Ball (mathematics) 0101 mathematics Algebraic Geometry (math.AG) Mathematics::Symplectic Geometry ComputingMilieux_MISCELLANEOUS Quotient Orbifold Mathematics |
Zdroj: | Journal für die reine und angewandte Mathematik Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2017, ⟨10.1515/crelle-2017-0005⟩ |
ISSN: | 1435-5345 0075-4102 |
DOI: | 10.1515/crelle-2017-0005 |
Popis: | We give an algebro-geometric construction of some of the non-arithmetic ball quotients constructed by the author, Parker and Paupert. The new construction reveals a relationship between the corresponding orbifold fundamental groups and the automorphism group of the Klein quartic, and also with groups constructed by Barthel–Hirzebruch–Höfer and Couwenberg–Heckman–Looijenga. |
Databáze: | OpenAIRE |
Externí odkaz: |