Metal-CO Bonding in Mononuclear Transition Metal Carbonyl Complexes
Autor: | Gernot Frenking, Israel Fernández, Sudip Pan, Mingfei Zhou, Nicole Holzmann, Ingo Krossing |
---|---|
Rok vydání: | 2021 |
Předmět: |
Valence (chemistry)
Chemistry Charge density EDA-NOCV calculations Dewar−Chatt−Duncanson model Article transition metals Metal Partial charge Delocalized electron Crystallography bonding analysis Transition metal Covalent bond visual_art Carbonyl complexes visual_art.visual_art_medium QD1-999 Natural bond orbital |
Zdroj: | JACS Au JACS Au, Vol 1, Iss 5, Pp 623-645 (2021) |
ISSN: | 2691-3704 |
Popis: | DFT calculations have been carried out for coordinatively saturated neutral and charged carbonyl complexes [M(CO) n ] q where M is a metal atom of groups 2-10. The model compounds M(CO)2 (M = Ca, Sr, Ba) and the experimentally observed [Ba(CO)]+ were also studied. The bonding situation has been analyzed with a variety of charge and energy partitioning approaches. It is shown that the Dewar-Chatt-Duncanson model in terms of M ← CO σ-donation and M → CO π-backdonation is a valid approach to explain the M-CO bonds and the trend of the CO stretching frequencies. The carbonyl ligands of the neutral complexes carry a negative charge, and the polarity of the M-CO bonds increases for the less electronegative metals, which is particularly strong for the group 4 and group 2 atoms. The NBO method delivers an unrealistic charge distribution in the carbonyl complexes, while the AIM approach gives physically reasonable partial charges that are consistent with the EDA-NOCV calculations and with the trend of the C-O stretching frequencies. The AdNDP method provides delocalized MOs which are very useful models for the carbonyl complexes. Deep insight into the nature of the metal-CO bonds and quantitative information about the strength of the [M] ← (CO)8 σ-donation and [M(d)] → (CO)8 π-backdonation visualized by the deformation densities are provided by the EDA-NOCV method. The large polarity of the M-CO π orbitals toward the CO end in the alkaline earth octacarbonyls M(CO)8 (M = Ca, Sr, Ba) leads to small values for the delocalization indices δ(M-C) and δ(M···O) and significant overlap between adjacent CO groups, but the origin of the charge migration and the associated red-shift of the C-O stretching frequencies is the [M(d)] → (CO)8 π-backdonation. The heavier alkaline earth metals calcium, strontium and barium use their s/d valence orbitals for covalent bonding. They are therefore to be assigned to the transition metals. |
Databáze: | OpenAIRE |
Externí odkaz: |