On the discrete Dirac spectrum of a point electron in the zero-gravity Kerr–Newman spacetime
Autor: | Michael K.-H. Kiessling, Eric Ling, A. Shadi Tahvildar-Zadeh |
---|---|
Rok vydání: | 2022 |
Předmět: |
Quantum Physics
FOS: Physical sciences Statistical and Nonlinear Physics Mathematical Physics (math-ph) General Relativity and Quantum Cosmology (gr-qc) Dynamical Systems (math.DS) General Relativity and Quantum Cosmology Mathematics - Analysis of PDEs FOS: Mathematics Mathematics - Dynamical Systems Quantum Physics (quant-ph) Mathematical Physics Analysis of PDEs (math.AP) |
Zdroj: | Journal of Mathematical Physics. 63:112301 |
ISSN: | 1089-7658 0022-2488 |
DOI: | 10.1063/5.0084471 |
Popis: | The discrete spectrum of the Dirac operator for a point electron in the maximal analytically extended Kerr--Newman spacetime is determined in the zero-$G$ limit (z$G$KN), under some restrictions on the electrical coupling constant and on the radius of the ring-singularity of the z$G$KN spacetime. The spectrum is characterized by a triplet of integers, associated with winding numbers of orbits of dynamical systems on cylinders. A dictionary is established that relates the spectrum with the known hydrogenic Dirac spectrum. Numerical illustrations are presented. Open problems are listed. 62 pages, 13 figures |
Databáze: | OpenAIRE |
Externí odkaz: |