Model-based Bayesian filtering of cardiac contaminants from biomedical recordings
Autor: | Christian Jutten, Mohammad Bagher Shamsollahi, Reza Sameni |
---|---|
Přispěvatelé: | GIPSA - Signal Images Physique (GIPSA-SIGMAPHY), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Biomedical Signal and Image Processing Laboratory [Teheran] (BiSIPL), School of Electrical Engineering-Sharif University of Technology [Tehran] (SUT) |
Rok vydání: | 2008 |
Předmět: |
Engineering
Physiology Bayesian filtering Noise reduction Speech recognition fetal ECG/MCG extraction 0206 medical engineering Biomedical Engineering Biophysics 02 engineering and technology EMG denoising Sensitivity and Specificity Pattern Recognition Automated Ballistocardiography 03 medical and health sciences Electrocardiography 0302 clinical medicine [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing Artificial Intelligence Physiology (medical) Humans ECG/MCG denoising Magnetocardiography model-based filtering business.industry EEG denoising Reproducibility of Results 020601 biomedical engineering Fetal ecg Noise [SDV.IB]Life Sciences [q-bio]/Bioengineering Ecg signal business Artifacts [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing 030217 neurology & neurosurgery Algorithms |
Zdroj: | Physiological Measurement Physiological Measurement, IOP Publishing, 2008, 29 (5), pp.595-613. ⟨10.1088/0967-3334/29/5/006⟩ |
ISSN: | 0967-3334 1361-6579 |
DOI: | 10.1088/0967-3334/29/5/006⟩ |
Popis: | International audience; Electrocardiogram (ECG) and magnetocardiogram (MCG) signals are among the most considerable sources of noise for other biomedical signals. In some recent works, a Bayesian filtering framework has been proposed for denoising the ECG signals. In this paper, it is shown that this framework may be effectively used for removing cardiac contaminants such as the ECG, MCG and ballistocardiographic artifacts from different biomedical recordings such as the electroencephalogram, electromyogram and also for canceling maternal cardiac signals from fetal ECG/MCG. The proposed method is evaluated on simulated and real signals. |
Databáze: | OpenAIRE |
Externí odkaz: |