Model-based Bayesian filtering of cardiac contaminants from biomedical recordings

Autor: Christian Jutten, Mohammad Bagher Shamsollahi, Reza Sameni
Přispěvatelé: GIPSA - Signal Images Physique (GIPSA-SIGMAPHY), Département Images et Signal (GIPSA-DIS), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Biomedical Signal and Image Processing Laboratory [Teheran] (BiSIPL), School of Electrical Engineering-Sharif University of Technology [Tehran] (SUT)
Rok vydání: 2008
Předmět:
Engineering
Physiology
Bayesian filtering
Noise reduction
Speech recognition
fetal ECG/MCG extraction
0206 medical engineering
Biomedical Engineering
Biophysics
02 engineering and technology
EMG denoising
Sensitivity and Specificity
Pattern Recognition
Automated

Ballistocardiography
03 medical and health sciences
Electrocardiography
0302 clinical medicine
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Artificial Intelligence
Physiology (medical)
Humans
ECG/MCG denoising
Magnetocardiography
model-based filtering
business.industry
EEG denoising
Reproducibility of Results
020601 biomedical engineering
Fetal ecg
Noise
[SDV.IB]Life Sciences [q-bio]/Bioengineering
Ecg signal
business
Artifacts
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
030217 neurology & neurosurgery
Algorithms
Zdroj: Physiological Measurement
Physiological Measurement, IOP Publishing, 2008, 29 (5), pp.595-613. ⟨10.1088/0967-3334/29/5/006⟩
ISSN: 0967-3334
1361-6579
DOI: 10.1088/0967-3334/29/5/006⟩
Popis: International audience; Electrocardiogram (ECG) and magnetocardiogram (MCG) signals are among the most considerable sources of noise for other biomedical signals. In some recent works, a Bayesian filtering framework has been proposed for denoising the ECG signals. In this paper, it is shown that this framework may be effectively used for removing cardiac contaminants such as the ECG, MCG and ballistocardiographic artifacts from different biomedical recordings such as the electroencephalogram, electromyogram and also for canceling maternal cardiac signals from fetal ECG/MCG. The proposed method is evaluated on simulated and real signals.
Databáze: OpenAIRE