Strengths and Weaknesses of Docking Simulations in the SARS-CoV-2 Era: the Main Protease (Mpro) Case Study
Autor: | Alan Talevi, Lucas Nicolás Alberca, Carolina Leticia Bellera, Santiago Rodríguez, Luciana Gavernet, Melisa Edith Gantner, Manuel A. Llanos |
---|---|
Rok vydání: | 2021 |
Předmět: |
Virtual screening
Coronavirus disease 2019 (COVID-19) Computer science General Chemical Engineering Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Library and Information Sciences Machine learning computer.software_genre Molecular Docking Simulation Docking purl.org/becyt/ford/1 [https] Docking (dog) Humans purl.org/becyt/ford/1.6 [https] Retrospective Studies MPro SARS-CoV-2 Drug discovery business.industry COVID-19 General Chemistry Computer Science Applications Test set Artificial intelligence business computer Strengths and weaknesses Peptide Hydrolases |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
ISSN: | 1549-960X 1549-9596 |
DOI: | 10.1021/acs.jcim.1c00404 |
Popis: | The scientific community is working against the clock to arrive at therapeutic interventions to treat patients with COVID-19. Among the strategies for drug discovery, virtual screening approaches have the capacity to search potential hits within millions of chemical structures in days, with the appropriate computing infrastructure. In this article, we first analyzed the published research targeting the inhibition of the main protease (Mpro), one of the most studied targets of SARS-CoV-2, by docking-based methods. An alarming finding was the lack of an adequate validation of the docking protocols (i.e., pose prediction and virtual screening accuracy) before applying them in virtual screening campaigns. The performance of the docking protocols was tested at some level in 57.7% of the 168 investigations analyzed. However, we found only three examples of a complete retrospective analysis of the scoring functions to quantify the virtual screening accuracy of the methods. Moreover, only two publications reported some experimental evaluation of the proposed hits until preparing this manuscript. All of these findings led us to carry out a retrospective performance validation of three different docking protocols, through the analysis of their pose prediction and screening accuracy. Surprisingly, we found that even though all tested docking protocols have a good pose prediction, their screening accuracy is quite limited as they fail to correctly rank a test set of compounds. These results highlight the importance of conducting an adequate validation of the docking protocols before carrying out virtual screening campaigns, and to experimentally confirm the predictions made by the models before drawing bold conclusions. Finally, successful structure-based drug discovery investigations published during the redaction of this manuscript allow us to propose the inclusion of target flexibility and consensus scoring as alternatives to improve the accuracy of the methods. Fil: Llanos, Manuel. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Gantner, Melisa Edith. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Rodríguez, Santiago. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; Argentina Fil: Alberca, Lucas Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina Fil: Bellera, Carolina Leticia. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Talevi, Alan. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Gavernet, Luciana. Universidad Nacional de La Plata. Facultad de Ciencas Exactas. Laboratorio de Investigación y Desarrollo de Bioactivos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |