PRIMAGE project: predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers
Autor: | Giuliana Restante, Luis Martí-Bonmatí, Mario Aznar, Michel Rochette, Piotr Nowakowski, Daniel A. Keim, Angel Alberich-Bayarri, Marian Bubak, Marek Kasztelnik, Polyxeni Gkontra, Tomasz Gubała, Dawn Walker, Samira Essiaf, José Manuel García-Aznar, Wolfgang Jentner, Blanca Martínez de las Heras, J. Damian Segrelles, Adela Cañete, Kenneth Y. Wertheim, Jan Meizner, Jordi Mestres, Gracia Martí-Besa, Paul Richmond, Amelia Suárez, Ignacio Blanquer, Ana Jimenez-Pastor, Barbara Hero, Salvador Gilpérez, Karine Seymour, Marco Viceconti, Ruth Ladenstein, Ismael González-Valverde, Leonor Cerdá-Alberich, Emanuele Neri |
---|---|
Přispěvatelé: | Marti-Bonmati L., Alberich-Bayarri A., Ladenstein R., Blanquer I., Segrelles J.D., Cerda-Alberich L., Gkontra P., Hero B., Garcia-Aznar J.M., Keim D., Jentner W., Seymour K., Jimenez-Pastor A., Gonzalez-Valverde I., Martinez de las Heras B., Essiaf S., Walker D., Rochette M., Bubak M., Mestres J., Viceconti M., Marti-Besa G., Canete A., Richmond P., Wertheim K.Y., Gubala T., Kasztelnik M., Meizner J., Nowakowski P., Gilperez S., Suarez A., Aznar M., Restante G., Neri E. |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Male
Diffuse intrinsic pontine glioma lcsh:Medical physics. Medical radiology. Nuclear medicine medicine.medical_specialty Decision support system Artificial intelligence Computer science In silico lcsh:R895-920 Childhood cancer 030218 nuclear medicine & medical imaging Decision Support Techniques 03 medical and health sciences Neuroblastoma 0302 clinical medicine CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL Medical imaging medicine Artificial intelligence Biomarkers (tumour) Cloud computing Diffuse intrinsic pontine glioma Neuroblastoma Humans Cloud computing Radiology Nuclear Medicine and imaging Medical physics Child Neuroradiology Biomarkers (tumour) business.industry Brain Neoplasms Glioma Prognosis Biobank 3. Good health Tumor Burden Europe Phenotype Analytics 030220 oncology & carcinogenesis Disease Progression Observational study Original Article Female ddc:004 business Biomarkers |
Zdroj: | European Radiology Experimental, Vol 4, Iss 1, Pp 1-11 (2020) European Radiology Experimental Zaguán. Repositorio Digital de la Universidad de Zaragoza instname Zaguán: Repositorio Digital de la Universidad de Zaragoza Universidad de Zaragoza RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia |
ISSN: | 2509-9280 |
DOI: | 10.1186/s41747-020-00150-9 |
Popis: | [EN] PRIMAGE is one of the largest and more ambitious research projects dealing with medical imaging, artificial intelligence and cancer treatment in children. It is a 4-year European Commission-financed project that has 16 European partners in the consortium, including the European Society for Paediatric Oncology, two imaging biobanks, and three prominent European paediatric oncology units. The project is constructed as an observational in silico study involving high-quality anonymised datasets (imaging, clinical, molecular, and genetics) for the training and validation of machine learning and multiscale algorithms. The open cloud-based platform will offer precise clinical assistance for phenotyping (diagnosis), treatment allocation (prediction), and patient endpoints (prognosis), based on the use of imaging biomarkers, tumour growth simulation, advanced visualisation of confidence scores, and machine-learning approaches. The decision support prototype will be constructed and validated on two paediatric cancers: neuroblastoma and diffuse intrinsic pontine glioma. External validation will be performed on data recruited from independent collaborative centres. Final results will be available for the scientific community at the end of the project, and ready for translation to other malignant solid tumours. Horizon 2020 project (RIA, topic SC1-DTH-07-2018) |
Databáze: | OpenAIRE |
Externí odkaz: |