Tráfico vesicular, un viaje épico de las proteínas hacia la membrana
Autor: | Martínez-Navarro, Angélica Concepción, Chamorro-Flores, Alejandra, Vázquez-Bustos, Grissel, Ríos-Meléndez, Selma, Villalobos-López, Miguel Ángel, Pantoja, Omar, Arroyo-Becerra, Analilia |
---|---|
Rok vydání: | 2022 |
Předmět: | |
DOI: | 10.5281/zenodo.7238038 |
Popis: | RESUMEN La comunicación en las células eucariontes depende de un complejo sistema de membranas y varios mecanismos de tráfico intracelular en respuesta a señales externas e internas para controlar las respuestas fisiológicas. Las proteínas recién sintetizadas se envían a sus destinos celulares a través de dos tipos de procesos, uno basado en el péptido señal y el otro basado en el tráfico vesicular. El transporte de proteínas a través de vesículas ocurre en la vía secretora y la vía endocítica. El sistema de endomembranas funciona como una vía por la cual las vesículas se movilizan para llegar a su destino. Esta revisión brinda una descripción general de los mecanismos involucrados en el tráfico vesicular, incluidas las principales proteínas para la formación, división y fusión de vesículas, con énfasis general en las cubiertas de vesículas, proteínas SNARE, proteínas adaptadoras y receptores de selección de carga. Además, se dan a conocer ejemplos de defectos y enfermedades causadas por la inadecuada movilización de las proteínas en diferentes organismos con énfasis en humanos, lo que evidencia la importancia del tráfico vesicular. Finalmente se plantea un panorama de lo que falta por conocer y el potencial aporte del estudio de organismos adaptados a ambientes extremos. ABSTRACT Communication in eukaryotic cells depends on a complex membrane system and several intracellular trafficking mechanisms in response to external and internal cues to control physiological responses. Newly synthesized proteins are delivered to their cellular destinations through two types of processes, one based on signal peptide, and the other, based on vesicular trafficking. Transport of proteins through vesicles occurs along the secretory pathway and endocytic pathway. The endomembrane system functions as a track by which the vesicles are mobilized to reach their destination. This review gives an overview of mechanisms involved in vesicular trafficking including the main proteins for vesicle formation, cleavage, and fusion with overall emphasis on vesicle coats, SNARE proteins, adaptor proteins and cargo selection receptors. Additionally, examples of defects and diseases caused by the inadequate mobilization of proteins in different organisms, with emphasis on humans, are disclosed, which shows the importance of vesicular traffic. Finally, an overview of what remains to be known and the potential contribution of the study of organisms adapted to extreme environments is given. {"references": ["Alberts B, Johnson A, Lewis J, et al. Internal organization of the cell. In: Molecular Biology of the Cell 6th Edition. Garland Publishing New York and London; 2015. p. 565\u20131034.", "Lodish H, Berk A, Kaiser CA, et al. Biomembranes and cell architecture. In: Molecular Cell Biology 8th Edition. W.W.H. Freeman and Company. New York; 2016. p. 147\u2013196.", "Nielsen H, Tsirigos KD, Brunak S, et al. A Brief History of Protein Sorting Prediction. Protein Journal. 2019;38(3):200\u2013216.", "Liu JJ. Retromer-Mediated Protein Sorting and Vesicular Trafficking. Journal of Genetics and Genomics. 2016; 43(4):165\u2013177.", "Kim DH, Hwang I. Direct Targeting of Proteins from the Cytosol to Organelles: The ER versus Endosymbiotic Organelles. Traffic. 2013;14:613\u2013621.", "Farquhar MG, Hauri H-P. Protein sorting and vesicular traffic in the Golgi apparatus. The Golgi Apparatus. Springer; 1997. p. 63\u2013129.", "Cooper G. The Cell A Molecular Approach. 2nd edition. Sunderland (MA) Sinauer Associates. Biochemical Education. 2000;1\u20138.", "Gomez-Navarro N, Miller EA. COP-coated vesicles. Curr Biol. 2016;26:R54-R57.", "Blobel G. Protein targeting (Nobel lecture). Chembiochem. 2000;1:86\u2013102.", "Zheng N, Gierasch LM. Signal sequences: The same yet different. Cell. 1996;86(6):849\u2013852.", "Tirincsi A, Sicking M, Hadzibeganovic D, et al. The molecular biodiversity of protein targeting and protein transport related to the endoplasmic reticulum. International Journal of Molecular Sciences. 2022;23(1):143.", "Yarwood R, Hellicar J, Woodman PG, et al. Membrane trafficking in health and disease. Disease Models and Mechanisms. 2020;13(4): dmm043448.", "Lie PPY, Nixon RA. Lysosome trafficking and signaling in health and neurodegenerative diseases. Neurobiology of Disease. 2019;122:94\u2013105.", "Owji H, Nezafat N, Negahdaripour M, et al. A comprehensive review of signal peptides: Structure, roles, and applications. European Journal of Cell Biology. 2018;97:422\u2013441.", "Kmiec B, Teixeira PF, Glaser E. Shredding the signal: Targeting peptide degradation in mitochondria and chloroplasts. Trends in Plant Science. 2014;19(12):771\u2013778.", "Bersch K, Lobos Matthei I, Thoms S. Multiple localization by functional translational readthrough. Subcellular Biochemistry. 2018;89:201\u2013219.", "Li L, Liu KH, Sheen J. Dynamic Nutrient Signaling Networks in Plants. Annual Review of Cell and Developmental Biology. 2021;37:341\u2013367.", "Kim YH, Han ME, Oh SO. The molecular mechanism for nuclear transport and its application. Anatomy and Cell Biology. 2017;50:77\u201385.", "Lange A, Mills RE, Lange CJ, et al. Classical nuclear localization signals: Definition, function, and interaction with importin \u03b1. Journal of Biological Chemistry. 2007;282:5101\u20135105.", "Ghifari AS, Huang S, Murcha MW. The peptidases involved in plant mitochondrial protein import. Journal of Experimental Botany. 2019;70:6005\u20136018.", "Avenda\u00f1o-Monsalve MC, Ponce-Rojas JC, Funes S. From cytosol to mitochondria: The beginning of a protein journey. Biological Chemistry. 2020;401:645\u2013661.", "Teng YS, Chan PT, Li H min. Differential Age-Dependent Import Regulation by Signal Peptides. PLoS Biology. 2012;10:e1001416.", "Mukai S, Matsuzaki T, Fujiki Y. The cytosolic peroxisome-targeting signal (PTS)-receptors, Pex7p and Pex5pL, are sufficient to transport PTS2 proteins to peroxisomes. Biochimica et Biophysica Acta - Molecular Cell Research. 2019;1866:441\u2013449.", "Vassilieva E V., Nusrat A. Vesicular trafficking: Molecular tools and targets. Methods in Molecular Biology. 2008. p. 3\u201314.", "Pool MR. Targeting of Proteins for Translocation at the Endoplasmic Reticulum. International Journal of Molecular Sciences. 2022;23:3773.", "Teasdale RD, Jackson MR. Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annual Review of Cell and Developmental Biology. 1996;12:27\u201354.", "Hong X, Jeyifous O, Ronilo M, et al. A novel function for the ER retention signals in the C-terminus of kainate receptor subunit, GluK5. Biochimica et Biophysica Acta - Molecular Cell Research. 2019;1866:459\u2013473.", "Woodward AW, Bartel B. The Arabidopsis peroxisomal targeting signal type 2 receptor PEX7 is necessary for peroxisome function and dependent on PEX5. Molecular Biology of the Cell. 2005;16:573\u2013583.", "Baker A, Hogg TL, Warriner SL. Peroxisome protein import: A complex journey. Biochemical Society Transactions. 2016;44:783\u2013789.", "Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422:37\u201344.", "Lim JP, Gleeson PA. Macropinocytosis: An endocytic pathway for internalising large gulps. Immunology and Cell Biology. 2011;89:836\u2013843.", "Hommelgaard AM, Roepstorff K, Vilhardt F, et al. Caveolae: Stable membrane domains with a potential for internalization. Traffic. 2005;6:720\u2013724.", "Viotti C. ER to golgi-dependent protein secretion: The conventional pathway. Methods in Molecular Biology. 2016;1459:3\u201329.", "Staskevich AS. Ves\u00edculas con cubierta y su participaci\u00f3n en el transporte intracelular. Anuario de la Facultad de Ciencias Veterinarias 2000;2(1):130-138. https://repo.unlpam.edu.ar/handle/unlpam/5678", "Hellvard A, Mydel P. The 2013 Nobel Prize in Physiology or Medicine. Scandinavian Journal of Immunology. 2013;78(6):485\u2013485.", "Sanderfoot AA, Raikhel N V. The specificity of vesicle trafficking: Coat proteins and SNAREs. Plant Cell. 1999;11:629\u2013641.", "Urb\u00e9 S, Tooze SA, Barr FA. Formation of secretory vesicles in the biosynthetic pathway. Biochimica et Biophysica Acta - Molecular Cell Research. 1997;1358:6\u201322.", "Ford C, Parchure A, von Blume J, et al. Cargo sorting at the trans-Golgi network at a glance. Journal of Cell Science. 2021;134.", "Deraitus M, Freeman K. Essentials of cell biology. Essentials of Cell Biology. 2001;475.", "Connerly BPL, Nature S. How Do Proteins Move Through the Golgi Apparatus\u202f? The Vesicular Transport Model\u202f: Evidence. Nature Education. 2010;613:612\u2013613.", "Bonifacino JS, Lippincott-Schwartz J. Coat proteins:shaping membrane transport. Nat Rev Mol Cell Biol. 2003;4:409\u2013414.", "Cai H, Reinisch K, Ferro-Novick S. Coats, Tethers, Rabs, and SNAREs Work Together to Mediate the Intracellular Destination of a Transport Vesicle. Developmental Cell. 2007;12:671\u2013682.", "Bonifacino JS, Glick BS. The Mechanisms of Vesicle Budding and Fusion. Cell. 2004;116:153\u2013166.", "Rothman JE. Mechanisms of Intracellular Protein Transport. Biological Chemistry Hoppe-Seyler. 1996;377:407\u2013410.", "Hinshaw JE. Dynamin and its role in membrane fission. Annual Review of Cell and Developmental Biology. 2000;16:483\u2013519.", "Robinson MS. Forty years of clathrin-coated vesicles. Traffic. 2015;16:1210\u20131238.", "Lampe M, Vassilopoulos S, Merrifield C. Clathrin coated pits, plaques and adhesion. Journal of Structural Biology. 2016;196:48\u201356.", "Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nature reviews in mollecular cell biology. 2018.", "Krantz KC, Puchalla J, Thapa R, et al. Clathrin coat disassembly by the yeast hsc70/Ssa1p and auxilin/Swa2p proteins observed by single-particle burst analysis spectroscopy. Journal of Biological Chemistry. 2013;288:26721\u201326730.", "Beacham GM, Partlow EA, Hollopeter G. Conformational regulation of AP1 and AP2 clathrin adaptor complexes. Traffic. 2019;20:741\u2013751.", "Eugster A, Frigerio G, Dale M, et al. COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO Journal. 2000;19:3905\u20133917.", "Stamnes MA, Rothman JE. The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein. Cell. 1993;73:999\u20131005.", "Boehm M, Aguilar RC, Bonifacino JS. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). EMBO Journal. 2001;20:6265\u20136276.", "Mossessova E, Corpina RA, Goldberg J. Crystal Structure of ARF1*Sec7 Complexed with Brefeldin A and Its Implications for the Guanine Nucleotide Exchange Mechanism. Molecular Cell. 2003;12:1403\u20131411.", "Spang A. ARF1 regulatory factors and COPI vesicle formation. Current Opinion in Cell Biology. 2002;14:423\u2013427.", "Yang JS, Lee SY, Gao M, et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. Journal of Cell Biology. 2002;159:69\u201378.", "Lee SY, Yang JS, Hong W, et al. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. Journal of Cell Biology. 2005;168:281\u2013290.", "Bigay J, Gounon P, Roblneau S, et al. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature. 2003;426:563\u2013566.", "Reinhard C, Schweikert M, Wieland FT, et al. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:8253\u20138257.", "Sato K, Nakano A. Mechanisms of COPII vesicle formation and protein sorting. FEBS Letters. 2007;581:2076\u20132082.", "Matsuoka K, Orci L, Amherdt M, et al. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Cell. 1998;93:263\u2013275.", "Connerly PL, Esaki M, Montegna EA, et al. Sec16 is a determinant of transitional ER organization. Current Biology. 2005;15:1439\u20131447.", "Gimeno RE, Espenshade P, Kaiser CA. SED4 encodes a yeast endoplasmic reticulum protein that binds Sec16p and participates in vesicle formation. Journal of Cell Biology. 1995;131:325\u2013338.", "Pelham HRB. SNAREs and the specificity of membrane fusion. Trends in Cell Biology. 2001;11:99\u2013101.", "Hay JC, Scheller RH. SNARES and NSF in targeted membrane fusion. Current Opinion in Cell Biology. 1997;9:505\u2013512.", "Rothman JE, S\u00f6llner TH. Throttles and dampers: Controlling the engine of membrane fusion. Science. 1997;276:1212\u20131213.", "Weber T, Zemelman B V., McNew JA, et al. SNAREpins: Minimal machinery for membrane fusion. Chemtracts. 1999;12:218\u2013222.", "Gu X, Brennan A, Wei W, et al. Vesicle Transport in Plants: A Revised Phylogeny of SNARE Proteins. Evolutionary Bioinformatics. 2020;16:1176934320956575.", "Katzmann DJ, Stefan CJ, Babst M, et al. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. Journal of Cell Biology. 2003;162:413\u2013423.", "Rusten TE, Stenmark H. How do ESCRT proteins control autophagy? Journal of Cell Science. 2009;122:2179\u20132183.", "Spitzer C, Reyes FC, Buono R, et al. The ESCRT-Related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development. Plant Cell. 2009;21:749\u2013766.", "Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway. Dev Cell. 2011;21:77\u201391.", "Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34:2398\u20132407.", "Jouvenet N. Dynamics of ESCRT proteins. Cell Mol Life Sci. 2012;69:4121\u20134133.", "Shintani T, Klionsky DJ. Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. Journal of Biological Chemistry. 2004;279:29889\u201329894.", "Aridor M, Weissman J, Bannykh S, et al. Cargo selection by the COPII budding machinery during export from the ER. Journal of Cell Biology. 1998;141:61\u201370.", "Caramelo JJ, Parodi AJ. Getting in and out from calnexin/calreticulin cycles. Journal of Biological Chemistry. 2008;283:10221\u201310225.", "Gupta GS. L-Type Lectins in ER-Golgi Intermediate Compartment. Animal Lectins: Form, Function and Clinical Applications. 2012. p. 145\u2013161.", "Miller EA, Beilharz TH, Malkus PN, et al. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 2003;114:497\u2013509.", "Herzig Y, Sharpe HJ, Elbaz Y, et al. A systematic approach to pair secretory cargo receptors with their cargo suggests a mechanism for cargo selection by erv14. PLoS Biology. 2012;10:e1001329.", "Capitani M, Sallese M. The KDEL receptor: New functions for an old protein. FEBS Letters. 2009;583:3863\u20133871.", "Dancourt J, Barlowe C. Protein sorting receptors in the early secretory pathway. Annual Review of Biochemistry. 2010;79:777\u2013802.", "Schimm\u00f6ller F, Singer-Kr\u00fcger B, Schr\u00f6der S, et al. The absence of Emp24p, a component of ER-derived COPII-coated vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO Journal. 1995;14:1329\u20131339.", "Belden WJ, Barlowe C. Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport. Journal of Biological Chemistry. 1996;271:26939\u201326946.", "Springer S, Chen E, Duden R, et al. The p24 proteins are not essential for vesicular transport in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:4034\u20134039.", "Powers J, Barlowe C. Erv14p directs a transmembrane secretory protein into COPII-coated transport vesicles. Molecular Biology of the Cell. 2002;13:880\u2013891.", "Belden WJ, Barlowe C. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science. 2001;294:1528\u20131531.", "Powers J, Barlowe C. Transport of Ax12p depends on Erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product. Journal of Cell Biology. 1998;142:1209\u20131222.", "Bue CA, Bentivoglio CM, Barlowe C. Erv26p directs pro-alkaline phosphatase into endoplasmic reticulum-derived coat protein complex II transport vesicles. Molecular Biology of the Cell. 2006;17:4780\u20134789.", "Otte S, Belden WJ, Heidtman M, et al. Erv41p and Erv46p: New components of COPII vesicles involved in transport between the ER and Golgi complex. Journal of Cell Biology. 2001;153:503\u2013517.", "Nakagawa T. Structures of the AMPA receptor in complex with its auxiliary subunit cornichon. Science. 2019;366:1259\u20131263.", "Roth S, Shira Neuman-Silberberg F, Barcelo G, et al. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell. 1995;81:967\u2013978.", "Herpers B, Rabouille C. mRNA localization and ER-based protein sorting mechanisms dictate the use of transitional endoplasmic reticulum-Golgi units involved in gurken transport in Drosophila oocytes. Molecular Biology of the Cell. 2004;15:5306\u20135317.", "Roemer T, Madden K, Chang J, et al. Selection of axial growth sites in yeast requires Axl2p, a novel plasma membrane glycoprotein. Genes and Development. 1996;10:777\u2013793.", "Halme A, Michelitch M, Mitchell EL, et al. Bud10p directs axial cell polarization in budding yeast and resembles a transmembrane receptor. Current Biology. 1996;6:570\u2013579.", "Zimmermannov\u00e1 O, Felcmanov\u00e1 K, Rosas-Santiago P, et al. Erv14 cargo receptor participates in regulation of plasma-membrane potential, intracellular pH and potassium homeostasis via its interaction with K+-specific transporters Trk1 and Tok1. Biochimica et Biophysica Acta - Molecular Cell Research. 2019;1866:1376\u20131388.", "Rosas-Santiago P, Lagunas-G\u00f3mez D, Barkla BJ, et al. Identification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3. Journal of Experimental Botany. 2015;66:2733\u20132748.", "Sastr\u00e9-Vel\u00e1squez LE. Identificaci\u00f3n del hom\u00f3logo a Cornichon/Erv14 y su papel en la regulaci\u00f3n del crecimiento del hongo filamentoso Neurospora crassa. [Baja California]; Cicese;2018:Tesis. https://www.repositorionacionalcti.mx/recurso/oai:cicese.repositorioinstitucional.mx:1007/2595", "Wudick MM, Portes MT, Michard E, et al. CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis. Science. 2018;360:533\u2013536.", "Ueda T, Nakano A. Vesicular traffic: An integral part of plant life. Current Opinion in Plant Biology. 2002;5:513\u2013517.", "Aspuria ET, Anai T, Fujii N, et al. Phenotypic instability of transgenic tobacco plants and their progenies expressing Arabidopsis thafiana small GTP-binding protein genes. Molecular & General Genetics. 1995;246:509\u2013513.", "Sano H, Ohashi Y. Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:4138\u20134144.", "Kang JG, Yun J, Kim DH, et al. Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell. 2001;105:625\u2013636.", "Lu C, Zainal Z, Tucker GA, et al. Developmental abnormalities and reduced fruit softening in tomato plants expressing an antisense rab11 GTPase gene. Plant Cell. 2001;13:1819\u20131833.", "Kato T, Morita MT, Fukaki H, et al. Sgr2, a phospholipase-like protein, and zlg/sgr4, a snare, are involved in the shoot gravitropism of Arabidopsis. Plant Cell. 2002;14:33\u201346.", "Morita MT, Kato T, Nagafusa K, et al. Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell. 2002;14:47\u201356.", "Rojo E, Gillmor CS, Kovaleva V, et al. VACUOLELESS1 Is an Essential Gene Required for Vacuole Formation and Morphogenesis in Arabidopsis. Developmental Cell. 2001;1:303\u2013310.", "Asaoka R, Uemura T, Ito J, et al. Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant Journal. 2013;73:240\u2013249.", "Schekman R. Lasker Basic Medical Research Award. SEC mutants and the secretory apparatus. Nature medicine. 2002;8:1055\u20131058.", "Oliveira DL, Nakayasu ES, Joffe LS, et al. Characterization of yeast extracellular vesicles: Evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS ONE. 2010;5:1\u201313.", "Thrane AS, Rangroo Thrane V, Nedergaard M. Drowning stars: Reassessing the role of astrocytes in brain edema. Trends in Neurosciences. 2014;37:620\u2013628.", "Zorec R, Parpura V, Verkhratsky A. Astroglial vesicular network: evolutionary trends, physiology and pathophysiology. Acta Physiologica. 2018;222.", "Edvardson S, Gerhard F, Jalas C, et al. Hypomyelination and developmental delay associated with VPS11 mutation in Ashkenazi-Jewish patients. Journal of Medical Genetics. 2015;52:749\u2013753.", "Merlini G. A MYLOIDOSIS A SSOCIATED W ITH W ALDENSTR\u00d6M D ISEASE OR IgM-MGUS. IWMF Torch. 2013;14.2:1\u20134.", "Nalls MA, N P, CM L, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature genetics. 2014;46:989\u2013993.", "Tsai L, Schwake M, Corbett MA, et al. P.1.20 GOSR2: A novel form of Congenital Muscular Dystrophy. Neuromuscular Disorders. 2013;23:748.", "Miranda AM, Herman M, Cheng R, et al. Excess Synaptojanin 1 Contributes to Place Cell Dysfunction and Memory Deficits in the Aging Hippocampus in Three Types of Alzheimer's Disease. Cell Reports. 2018;23:2967\u20132975.", "Small SA, Kent K, Pierce A, et al. Model-guided microarray implicates the retromer complex in Alzheimer's disease. Annals of Neurology. 2005;58:909\u2013919.", "Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257\u2013268.", "Roach TG, L\u00e5ng HKM, Xiong W, et al. Protein Trafficking or Cell Signaling: A Dilemma for the Adaptor Protein TOM1. Frontiers in Cell and Developmental Biology. 2021;9:643769.", "Makioka K, Yamazaki T, Takatama M, et al. Immunolocalization of Tom1 in relation to protein degradation systems in Alzheimer's disease. Journal |
Databáze: | OpenAIRE |
Externí odkaz: |