Magnetic properties and quench dynamics of two interacting ultracold molecules in a trap
Autor: | Michał Tomza, Anna Dawid |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Fotònica |
Rok vydání: | 2020 |
Předmět: |
Atomic Physics (physics.atom-ph)
FOS: Physical sciences General Physics and Astronomy Quantum simulator Molecules -- Magnetic properties Mol·lècules -- Propietats magnètiques 01 natural sciences Molecular physics 010305 fluids & plasmas Physics - Atomic Physics Magnetization Paramagnetism Physics - Chemical Physics 0103 physical sciences Ultracold molecules Physical and Theoretical Chemistry 010306 general physics Chemical Physics (physics.chem-ph) Physics Quantum Physics Física [Àrees temàtiques de la UPC] Intermolecular force 3. Good health Magnetic field Coupling (physics) Dipole Optical tweezers Quantum Gases (cond-mat.quant-gas) Magnetic fields Quantum Physics (quant-ph) Condensed Matter - Quantum Gases |
Zdroj: | Physical Chemistry Chemical Physics UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
ISSN: | 1463-9076 |
DOI: | 10.1039/d0cp05542e |
Popis: | We theoretically investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a one-dimensional harmonic trap in external electric and magnetic fields. The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions. We show that various magnetization states arise from the interplay of the molecular interactions, electronic spins, dipole moments, rotational structures, external fields, and spin-rotation coupling. The rich magnetization diagrams depend primarily on the anisotropy of the intermolecular interaction and the spin-rotation coupling. These specific molecular properties are challenging to calculate or measure. Therefore, we propose the quench dynamics experiments for extracting them from observing the time evolution of the analyzed system. Our results indicate the possibility of controlling the molecular few-body magnetization with the external electric field and pave the way towards studying the magnetization of ultracold molecules trapped in optical tweezers or optical lattices and their application in quantum simulation of molecular multichannel many-body Hamiltonians and quantum information storing. 16 pages, 8 figures, the code is available at https://github.com/Shmoo137/Two-Molecules-1D-Trap |
Databáze: | OpenAIRE |
Externí odkaz: |