Anti‐symplectic involutions for Lagrangian spheres in a symplectic quadric surface

Autor: Jiyeon Moon, Joontae Kim
Rok vydání: 2021
Předmět:
Zdroj: Bulletin of the London Mathematical Society. 53:1717-1723
ISSN: 1469-2120
0024-6093
DOI: 10.1112/blms.12533
Popis: We show that the space of anti-symplectic involutions of a monotone $S^2\times S^2$ whose fixed points set is a Lagrangian sphere is connected. This follows from a stronger result, namely that any two anti-symplectic involutions in that space are Hamiltonian isotopic.
8 pages, 1 figure
Databáze: OpenAIRE