Anti‐symplectic involutions for Lagrangian spheres in a symplectic quadric surface
Autor: | Jiyeon Moon, Joontae Kim |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
General Mathematics 53D12 55M35 32Q65 Geometric Topology (math.GT) Fixed point Space (mathematics) Set (abstract data type) Mathematics - Geometric Topology symbols.namesake Monotone polygon Mathematics - Symplectic Geometry FOS: Mathematics symbols Symplectic Geometry (math.SG) SPHERES Mathematics::Symplectic Geometry Hamiltonian (control theory) Lagrangian Symplectic geometry Mathematics |
Zdroj: | Bulletin of the London Mathematical Society. 53:1717-1723 |
ISSN: | 1469-2120 0024-6093 |
DOI: | 10.1112/blms.12533 |
Popis: | We show that the space of anti-symplectic involutions of a monotone $S^2\times S^2$ whose fixed points set is a Lagrangian sphere is connected. This follows from a stronger result, namely that any two anti-symplectic involutions in that space are Hamiltonian isotopic. 8 pages, 1 figure |
Databáze: | OpenAIRE |
Externí odkaz: |