Numerical stability of a hybrid method for pricing options

Autor: Lucia Caramellino, Antonino Zanette, Maya Briani, Giulia Terenzi
Přispěvatelé: Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC), Consiglio Nazionale delle Ricerche [Roma] (CNR), Dipartimento di Matematica [Rome], Università degli Studi di Roma Tor Vergata [Roma], Laboratoire d'Analyse et de Mathématiques Appliquées (LAMA), Université Paris-Est Marne-la-Vallée (UPEM)-Fédération de Recherche Bézout-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Mathematical Risk Handling (MATHRISK), Université Paris-Est Marne-la-Vallée (UPEM)-École des Ponts ParisTech (ENPC)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Fédération de Recherche Bézout-Université Paris-Est Marne-la-Vallée (UPEM), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Mathematical optimization
Computer science
media_common.quotation_subject
Computational Finance (q-fin.CP)
01 natural sciences
FOS: Economics and business
010104 statistics & probability
Quantitative Finance - Computational Finance
0502 economics and business
Jump model
Stochastic volatility
0101 mathematics
Tree methods
media_common
050208 finance
stochastic volatility
jump-diffusion process
European and American options
tree methods
finite-difference
numerical stability
05 social sciences
Numerical stability
Type scheme
Interest rate
Settore MAT/06 - Probabilita' e Statistica Matematica
Finite-difference
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
Jump-diffusion process
Binomial options pricing model
Volatility (finance)
General Economics
Econometrics and Finance

2000 MSC:91G10
60H30
65C20

Finance
Zdroj: International Journal of Theoretical and Applied Finance
International Journal of Theoretical and Applied Finance, World Scientific Publishing, 2019, pp.1950036. ⟨10.1142/S0219024919500365⟩
International journal of theoretical and applied finance (2019). doi:10.1142/S0219024919500365
info:cnr-pdr/source/autori:Briani M.; Caramellino L.; Terenzi G.; Zanette A./titolo:NUMERICAL STABILITY of A HYBRID METHOD for PRICING OPTIONS/doi:10.1142%2FS0219024919500365/rivista:International journal of theoretical and applied finance/anno:2019/pagina_da:/pagina_a:/intervallo_pagine:/volume
International Journal of Theoretical and Applied Finance, 2019, pp.1950036. ⟨10.1142/S0219024919500365⟩
ISSN: 0219-0249
DOI: 10.1142/S0219024919500365⟩
Popis: We develop and study stability properties of a hybrid approximation of functionals of the Bates jump model with stochastic interest rate that uses a tree method in the direction of the volatility and the interest rate and a finite-difference approach in order to handle the underlying asset price process. We also propose hybrid simulations for the model, following a binomial tree in the direction of both the volatility and the interest rate, and a space-continuous approximation for the underlying asset price process coming from a Euler-Maruyama type scheme. We show that our methods allow to obtain efficient and accurate European and American option prices. Numerical experiments are provided, and show the reliability and the efficiency of the algorithms.
Comment: arXiv admin note: text overlap with arXiv:1503.03705
Databáze: OpenAIRE