Hyperspectral imaging reveals spectral differences and can distinguish malignant melanoma from pigmented basal cell carcinomas : A pilot study

Autor: Ilkka Pölönen, Noora Neittaanmäki, Mari Grönroos, Mari Salmivuori, J.E. Räsänen
Přispěvatelé: Tampere University, Clinical Medicine, Department of Respiratory medicine, Dermatology and Allergology, HYKS erva, Päijät-Häme Welfare Consortium, HUS Inflammation Center, Department of Dermatology, Allergology and Venereology, University of Helsinki, Helsinki University Hospital Area
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Pathology
medicine.medical_specialty
Skin Neoplasms
010504 meteorology & atmospheric sciences
neural network
3122 Cancers
0211 other engineering and technologies
malignant melanoma
Pilot Projects
02 engineering and technology
neuroverkot
Dermatology
tyvisolusyöpä
3121 Internal medicine
01 natural sciences
Sensitivity and Specificity
Lesion
ihosyöpä
Diagnosis
Differential

basal cell carcinoma
medicine
Humans
Basal cell carcinoma
Basal cell
Prospective Studies
Melanoma
021101 geological & geomatics engineering
0105 earth and related environmental sciences
business.industry
spektrikuvaus
Hyperspectral imaging
deep learning
General Medicine
Hyperspectral Imaging
diagnostiikka
medicine.disease
3126 Surgery
anesthesiology
intensive care
radiology

Reflectivity
Confidence interval
3. Good health
koneoppiminen
Carcinoma
Basal Cell

RL1-803
3121 General medicine
internal medicine and other clinical medicine

medicine.symptom
Differential diagnosis
business
Zdroj: Acta Dermato-Venereologica, Vol 101, Iss 2, p adv00405 (2021)
Popis: Pigmented basal cell carcinomas can be difficult to distinguish from melanocytic tumours. Hyperspectral imaging is a non-invasive imaging technique that measures the reflectance spectra of skin in vivo. The aim of this prospective pilot study was to use a convolutional neural network classifier in hyperspectral images for differential diagnosis between pigmented basal cell carcinomas and melanoma. A total of 26 pigmented lesions (10 pigmented basal cell carcinomas, 12 melanomas in situ, 4 invasive melanomas) were imaged with hyperspectral imaging and excised for histopathological diagnosis. For 2-class classifier (melanocytic tumours vs pigmented basal cell carcinomas) using the majority of the pixels to predict the class of the whole lesion, the results showed a sensitivity of 100% (95% confidence interval 81-100%), specificity of 90% (95% confidence interval 60-98%) and positive predictive value of 94% (95% confidence interval 73-99%). These results indicate that a convolutional neural network classifier can differentiate melanocytic tumours from pigmented basal cell carcinomas in hyperspectral images. Further studies are warranted in order to confirm these preliminary results, using larger samples and multiple tumour types, including all types of melanocytic lesions. publishedVersion
Databáze: OpenAIRE