Quasimultiples of geometric designs
Autor: | Gary L. Ebert |
---|---|
Rok vydání: | 2004 |
Předmět: |
Discrete mathematics
Affine planes Computation Inversive Type (model theory) Unitals Theoretical Computer Science Block design Combinatorics Affine geometry Quasimultiples Simple (abstract algebra) Finite geometry Discrete Mathematics and Combinatorics Affine transformation Inversive planes Mathematics |
Zdroj: | Discrete Mathematics. 284:123-129 |
ISSN: | 0012-365X |
DOI: | 10.1016/j.disc.2003.11.028 |
Popis: | We construct quasimultiples of affine planes, inversive planes, and unitals from geometrical configurations in various finite geometries. All designs have k=λ. These designs are simple (no repeated blocks), and all appear to be irreducible in the sense that a quasimultiple of type P will have no subdesign isomorphic to P. This is verified for small orders by computer computations. |
Databáze: | OpenAIRE |
Externí odkaz: |