Combined index of genomic prediction methods applied to productivity

Autor: Fabyano Fonseca e Silva, Camila Ferreira Azevedo, Marcos Deon Vilela de Resende, Moysés Nascimento, Leísa Pires Lima, Matheus Massariol Suela
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Ciência Rural v.49 n.6 2019
Ciência Rural
Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
Ciência Rural, Vol 49, Iss 6
Ciência Rural, Volume: 49, Issue: 6, Article number: e20181008, Published: 19 JUN 2019
Popis: Rice cultivation has great national and global importance, being one of the most produced and consumed cereals in the world and the primary food for more than half of the world’s population. Because of its importance as food, developing efficient methods to select and predict genetically superior individuals in reference to plant traits is of extreme importance for breeding programs. The objective of this research was to evaluate and compare the efficiency of the Delta-p, G-BLUP (Genomic Best Linear Unbiased Predictor), BayesCpi, BLASSO (Bayesian Least Absolute Shrinkage and Selection Operator), Delta-p/G-BLUP index, Delta-p/BayesCpi index, and Delta-p/BLASSO index in the estimation of genomic values and the effects of single nucleotide polymorphisms on phenotypic data associated with rice traits. Use of molecular markers allowed high selective efficiency and increased genetic gain per unit time. The Delta-p method uses the concept of change in allelic frequency caused by selection and the theoretical concept of genetic gain. The Index is based on the principle of combined selection, using the information regarding the additive genomic values predicted via G-BLUP, BayesCpi, BLASSO, or Delta-p. These methods were applied and compared for genomic prediction using nine rice traits: flag leaf length, flag leaf width, panicles number per plant, primary panicle branch number, seed length, seed width, amylose content, protein content, and blast resistance. Delta-p/G-BLUP index had higher predictive abilities for the traits studied, except for amylose content trait in which the method with the highest predictive ability was BayesCpi, being approximately 3% greater than that of the Delta-p/G-BLUP index. RESUMO: A cultura do arroz tem grande importância nacional e mundial por ser um dos cereais mais produzidos e consumidos no mundo, caracterizando-se como o principal alimento de mais da metade da população mundial. Em função de sua importância alimentar, desenvolver métodos eficientes que visam a predição e a seleção de indivíduos geneticamente superiores, quanto a características da planta, é de extrema importância para os programas de melhoramento. Diante disso, o objetivo deste trabalho foi avaliar e comparar a eficiência do método Delta-p, G-BLUP, BayesCpi, BLASSO e o índice Delta-p/G-BLUP, índice Delta-p/BayesCpi e índice Delta-p/BLASSO, na estimação de valores genômicos e dos efeitos de marcadores SNPs (Single Nucleotide Polymorphisms) em dados fenotípicos associados a características de arroz. A utilização de marcadores moleculares permite alta eficiência seletiva e o aumento do ganho genético por unidade de tempo. O método Delta-p utiliza o conceito de mudança na frequência alélica devido à seleção e o conceito teórico de ganho genético. O Índice é baseado no princípio da seleção combinada, utiliza conjuntamente as informações dos valores genômicos aditivos preditos via G-BLUP, BayesCpi ou BLASSO e via Delta-p. Estes métodos foram aplicados e comparados quanto à predição genômica utilizando nove características de arroz (Oryza sativa), sendo elas: comprimento da folha bandeira, largura da folha bandeira; número de panículas por planta; número de ramos da panícula primária; comprimento de semente; largura de semente; teor de amilose; teor de proteína; resistência a bruzone. O índice Delta-p/G-BLUP obteve maiores capacidades preditivas para as características estudadas, exceto para a característica Conteúdo de amilose, em que o método que obteve maior capacidade preditiva foi o BayesCpi, sendo aproximadamente 3% superior ao índice Delta-p/G-BLUP.
Databáze: OpenAIRE