Audio segmentation of broadcast news : a hierarchical system with feature selection for the Albayzin-2010 evaluation

Autor: Climent Nadeu, Taras Butko
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
ICASSP
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: In this paper, we present an audio segmentation system for broadcast news, and its results in the Albayzin-2010 evaluation. First of all, the Albayzin-2010 evaluation setup, developed by the authors, is presented; in particular, the database and the metric are described. The reported hierarchical HMM-GMM-based system is composed of one binary detector for each of the five considered classes (music, speech, speech over music, speech over noise and other). A fast one-pass-training feature selection technique is adapted to the audio segmentation task to improve the results and to reduce the dimensionality of the input feature vector.
Databáze: OpenAIRE