Single‐Scan Selective Excitation of Individual NMR Signals in Overlapping Multiplets

Autor: Peter Kiraly, Nicolas Kern, Mateusz P. Plesniak, Mathias Nilsson, David J. Procter, Gareth A. Morris, Ralph W. Adams
Přispěvatelé: University of Manchester [Manchester], Laboratoire d'innovation moléculaire et applications (LIMA), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Angewandte Chemie International Edition
Angewandte Chemie International Edition, Wiley-VCH Verlag, 2021, 60 (2), pp.666-669. ⟨10.1002/anie.202011642⟩
Angewandte Chemie (International Ed. in English)
ISSN: 1433-7851
1521-3773
DOI: 10.1002/anie.202011642⟩
Popis: 2D NMR is an immensely powerful structural tool but it is time‐consuming. Targeting individual chemical groups by selective excitation in a 1D experiment can give the information required far more quickly. A major problem, however, is that proton NMR spectra are often extensively overlapped, so that in practice only a minority of sites can be selectively excited. Here we overcome that problem using a fast, single‐scan method that allows selective excitation of the signals of a single proton multiplet even where it is severely overlapped by other multiplets. The advantages of the method are illustrated in a selective 1D NOESY experiment, the most efficient way to determine relative configuration unambiguously by NMR. The new approach presented here has the potential to broaden significantly the applicability of selective excitation and unlock its real potential for many other experiments.
Selective excitation of overlapped multiplets in a single scan broadens the applicability of 1D selective NMR experiments.
Databáze: OpenAIRE