Droplet tilings for rapid exploration of spatially constrained many-body systems

Autor: Manu Prakash, Anton Molina, Stefan Karpitschka, Shailabh Kumar
Rok vydání: 2021
Předmět:
Zdroj: Proc Natl Acad Sci U S A
ISSN: 1091-6490
0027-8424
DOI: 10.1073/pnas.2020014118
Popis: Geometry in materials is a key concept which can determine material behavior in ordering, frustration, and fragmentation. More specifically, the behavior of interacting degrees of freedom subject to arbitrary geometric constraints has the potential to be used for engineering materials with exotic phase behavior. While advances in lithography have allowed for an experimental exploration of geometry on ordering that has no precedent in nature, many of these methods are low throughput or the underlying dynamics remain difficult to observe directly. Here, we introduce an experimental system that enables the study of interacting many-body dynamics by exploiting the physics of multidroplet evaporation subject to two-dimensional spatial constraints. We find that a high-energy initial state of this system settles into frustrated, metastable states with relaxation on two timescales. We understand this process using a minimal dynamical model that simulates the overdamped dynamics of motile droplets by identifying the force exerted on a given droplet as being proportional to the two-dimensional vapor gradients established by its neighbors. Finally, we demonstrate the flexibility of this platform by presenting experimental realizations of droplet−lattice systems representing different spin degrees of freedom and lattice geometries. Our platform enables a rapid and low-cost means to directly visualize dynamics associated with complex many-body systems interacting via long-range interactions. More generally, this platform opens up the rich design space between geometry and interactions for rapid exploration with minimal resources.
Databáze: OpenAIRE