Characterizing Resource Allocation Trade-Offs in 5G NR Serving Multicast and Unicast Traffic
Autor: | Yuliya Gaidamaka, Sergey Andreev, Dmitri Moltchanov, Konstantin E. Samouylov, Roman Kovalchukov, Rustam Pirmagomedov, Yevgeni Koucheryavy, Andrey Samuylov |
---|---|
Přispěvatelé: | Tampere University, Electrical Engineering, Research group: Emerging Technologies for Nano-Bio-Info-Cogno |
Rok vydání: | 2020 |
Předmět: |
Queueing theory
Directional antenna Multicast business.industry Computer science 213 Electronic automation and communications engineering electronics Applied Mathematics ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS 020206 networking & telecommunications Data_CODINGANDINFORMATIONTHEORY 02 engineering and technology Upper and lower bounds Computer Science Applications 0202 electrical engineering electronic engineering information engineering Electrical and Electronic Engineering Unicast business 5G Computer network |
Zdroj: | IEEE Transactions on Wireless Communications. 19:3421-3434 |
ISSN: | 1558-2248 1536-1276 |
Popis: | The use of highly directional antenna radiation patterns for both the access point (AP) and the user equipment (UE) in the emerging millimeter-wave (mmWave)-based New Radio (NR) systems is inherently beneficial for unicast transmissions by providing an extension of the coverage range and eventually resulting in lower required NR AP densities. On the other hand, efficient resource utilization for serving multicast sessions demands narrower antenna directivities, which yields a trade-off between these two types of traffic that eventually affects the system deployment choices. In this work, with the tools from queuing theory and stochastic geometry, we develop an analytical framework capturing both the distance- and traffic-related aspects of the NR AP serving a mixture of multicast and unicast traffic. Our numerical results indicate that the service process of unicast sessions is severely compromised when (i) the fraction of unicast sessions is significant, (ii) the spatial session arrival intensity is high, or (iii) the service time of the multicast sessions is longer than that of the unicast sessions. To balance the multicast and unicast session drop probabilities, an explicit prioritization is required. Furthermore, for a given fraction of multicast sessions, lower antenna directivity at the NR AP characterized by a smaller NR AP inter-site distance (ISD) leads to a better performance in terms of multicast and unicast session drop probabilities. Aiming to increase the ISD, while also maintaining the drop probability at the target level, the serving of multicast sessions is possible over the unicast mechanisms, but it results in worse performance for the practical NR AP antenna configurations. However, this approach may become feasible as arrays with higher numbers of antenna elements begin to be available. Our developed mathematical framework can be employed to estimate the parameters of the NR AP when handling a mixture of multicast and unicast sessions as well as drive a lower bound on the density of the NR APs, which is needed to serve a certain mixture of multicast and unicast traffic types with their target performance requirements. acceptedVersion |
Databáze: | OpenAIRE |
Externí odkaz: |