A Bilevel Approach for Optimal Price-Setting of Time-and-Level-of-Use Tariffs

Autor: Mathieu Besançon, Luce Brotcorne, Juan A. Gomez-Herrera, Miguel F. Anjos
Přispěvatelé: Integrated Optimization with Complex Structure (INOCS), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université libre de Bruxelles (ULB)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), École Polytechnique de Montréal (EPM), School of Mathematics - University of Edinburgh, University of Edinburgh
Rok vydání: 2020
Předmět:
Zdroj: IEEE Transactions on Smart Grid
IEEE Transactions on Smart Grid, 2020, 11 (6), pp.5462-5465. ⟨10.1109/TSG.2020.3000651⟩
Besançon, M, Anjos, M F, Brotcorne, L & Gomez-herrera, J A 2020, ' A Bilevel Approach to Optimal Price-Setting of Time-and-Level-of-Use Tariffs ', IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 5462-5465 . https://doi.org/10.1109/TSG.2020.3000651
IEEE Transactions on Smart Grid, Institute of Electrical and Electronics Engineers, 2020, 11 (6), pp.5462-5465. ⟨10.1109/TSG.2020.3000651⟩
ISSN: 1949-3061
1949-3053
Popis: Time-and-Level-of-Use (TLOU) is a recently proposed pricing policy for energy, extending Time-of-Use with the addition of a capacity that users can book for a given time frame, reducing their expected energy cost if they respect this self-determined capacity limit. We introduce a variant of the TLOU defined in the literature, aligned with the supplier interest to prevent unplanned over-consumption. The optimal price-setting problem of TLOU is defined as a bilevel, bi-objective problem anticipating user choices in the supplier decision. An efficient resolution scheme is developed, based on the specific discrete structure of the lower-level user problem. Computational experiments using consumption distributions estimated from historical data illustrate the effectiveness of the proposed framework.
Databáze: OpenAIRE