Exploiting Crowd Sourced Reviews to Explain Movie Recommendation
Autor: | Christophe Dupuy, Renata Teixeira, Francis Bach, Christophe Diot, Sara El Aouad |
---|---|
Přispěvatelé: | Laboratory of Information, Network and Communication Sciences (LINCS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT), Measuring networks for enhancing USer Experience (MUSE), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Technicolor R & I [Cesson Sévigné], Technicolor, Statistical Machine Learning and Parsimony (SIERRA), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire d'informatique de l'école normale supérieure (LIENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), EL AOUAD, SARA, Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria Paris-Rocquencourt, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) |
Rok vydání: | 2016 |
Předmět: |
Service (business)
Information retrieval Computer science 02 engineering and technology [INFO] Computer Science [cs] Recommender system Latent Dirichlet allocation Matrix decomposition Set (abstract data type) symbols.namesake 020204 information systems 0202 electrical engineering electronic engineering information engineering symbols [INFO]Computer Science [cs] 020201 artificial intelligence & image processing Movie reviews |
Zdroj: | Networked Systems ISBN: 9783319461397 NETYS 2nd Workshop on Recommendation Systems for TELEVISION and ONLINE VIDEO 2nd Workshop on Recommendation Systems for TELEVISION and ONLINE VIDEO, Sep 2015, Vienna, Austria |
DOI: | 10.1007/978-3-319-46140-3_15 |
Popis: | International audience; Streaming services such as Netflix, M-Go, and Hulu use advanced recommender systems to help their customers identify relevant content quickly and easily. These recommenders display the list of recommended movies organized in sublists labeled with the genre or some more specific labels. Unfortunately , existing methods to extract these labeled sublists require human annotators to manually label movies, which is time-consuming and biased by the views of annotators. In this paper, we design a method that relies on crowd sourced reviews to automatically identify groups of similar movies and label these groups. Our method takes the content of movie reviews available online as input for an algorithm based on Latent Dirichlet Allocation (LDA) that identifies groups of similar movies. We separate the set of similar movies that share the same combination of genre in sublists and personalize the movies to show in each sublist using matrix factorization. The results of a side-by-side comparison of our method against Technicolor's M-Go VoD service are encouraging. |
Databáze: | OpenAIRE |
Externí odkaz: |