Prediction of respiratory decompensation in Covid-19 patients using machine learning: The READY trial
Autor: | Anna Siefkas, Abigail Green-Saxena, Carson Lam, Gina Barnes, Jana Hoffman, Gregory Braden, Jacob Calvert, R. Phillip Dellinger, Hoyt Burdick, Emily Pellegrini, Andrea McCoy, Jean Louis Vincent, Ritankar Das, Samson Mataraso |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Male
0301 basic medicine medicine.medical_treatment Informatique appliquée logiciel computer.software_genre law.invention Machine Learning COVID-19 Testing 0302 clinical medicine Mechanical ventilation law Medicine Prospective Studies Aged 80 and over Middle Aged Prognosis Early warning score Computer Science Applications Ventilation (architecture) Female Coronavirus Infections Respiratory Insufficiency Algorithms Adult Pneumonia Viral Health Informatics Machine learning Sensitivity and Specificity Article Betacoronavirus 03 medical and health sciences Humans Decompensation Pandemics Aged Clinical Laboratory Techniques SARS-CoV-2 business.industry Computational Biology COVID-19 Informatique médicale Respiration Artificial Triage United States COVID-19 Drug Treatment Mews Clinical trial 030104 developmental biology Diagnostic odds ratio Artificial intelligence business Prediction computer 030217 neurology & neurosurgery |
Zdroj: | Computers in biology and medicine, 124 Computers in Biology and Medicine |
Popis: | Background: Currently, physicians are limited in their ability to provide an accurate prognosis for COVID-19 positive patients. Existing scoring systems have been ineffective for identifying patient decompensation. Machine learning (ML) may offer an alternative strategy. A prospectively validated method to predict the need for ventilation in COVID-19 patients is essential to help triage patients, allocate resources, and prevent emergency intubations and their associated risks. Methods: In a multicenter clinical trial, we evaluated the performance of a machine learning algorithm for prediction of invasive mechanical ventilation of COVID-19 patients within 24 h of an initial encounter. We enrolled patients with a COVID-19 diagnosis who were admitted to five United States health systems between March 24 and May 4, 2020. Results: 197 patients were enrolled in the REspirAtory Decompensation and model for the triage of covid-19 patients: a prospective studY (READY) clinical trial. The algorithm had a higher diagnostic odds ratio (DOR, 12.58) for predicting ventilation than a comparator early warning system, the Modified Early Warning Score (MEWS). The algorithm also achieved significantly higher sensitivity (0.90) than MEWS, which achieved a sensitivity of 0.78, while maintaining a higher specificity (p < 0.05). Conclusions: In the first clinical trial of a machine learning algorithm for ventilation needs among COVID-19 patients, the algorithm demonstrated accurate prediction of the need for mechanical ventilation within 24 h. This algorithm may help care teams effectively triage patients and allocate resources. Further, the algorithm is capable of accurately identifying 16% more patients than a widely used scoring system while minimizing false positive results. SCOPUS: ar.j info:eu-repo/semantics/published |
Databáze: | OpenAIRE |
Externí odkaz: |