The open XXZ spin chain in the SoV framework: scalar product of separate states

Autor: Nikolai Kitanine, Véronique Terras, J. M. Maillet, Giuliano Niccoli
Přispěvatelé: Institut de Mathématiques de Bourgogne [Dijon] (IMB), Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Rok vydání: 2018
Předmět:
High Energy Physics - Theory
Statistics and Probability
Integrable system
Diagonal form
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Scalar (mathematics)
FOS: Physical sciences
General Physics and Astronomy
algebra
determinant
integrability
01 natural sciences
0103 physical sciences
thermodynamical
correlation function
Gauge theory
Algebraic number
010306 general physics
Condensed Matter - Statistical Mechanics
Mathematical Physics
Eigenvalues and eigenvectors
Mathematical physics
Mathematics
form factor
Statistical Mechanics (cond-mat.stat-mech)
Nonlinear Sciences - Exactly Solvable and Integrable Systems
K-matrix
010308 nuclear & particles physics
Mathematical analysis
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Vandermonde matrix
boundary condition
[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]
Automatic Keywords
Heisenberg
High Energy Physics - Theory (hep-th)
Modeling and Simulation
Thermodynamic limit
Exactly Solvable and Integrable Systems (nlin.SI)
transformation: gauge
spin: chain
Zdroj: J.Phys.A
J.Phys.A, 2018, 51 (48), pp.485201. ⟨10.1088/1751-8121/aae76f⟩
ISSN: 1751-8121
1751-8113
DOI: 10.1088/1751-8121/aae76f
Popis: In our previous paper [1] we have obtained, for the XXX spin-1/2 Heisenberg open chain, new determinant representations for the scalar products of separate states in the quantum separation of variables (SoV) framework. In this article we perform a similar study in a more complicated case: the XXZ open spin-1/2 chain with the most general integrable boundary terms. To solve this model by means of SoV we use an algebraic Vertex-IRF gauge transformation reducing one of the boundary K-matrices to a diagonal form. As usual within the SoV approach, the scalar products of separate states are computed in terms of dressed Vandermonde determinants having an intricate dependency on the inhomogeneity parameters. We show that these determinants can be transformed into different ones in which the homogeneous limit can be taken straightforwardly. These representations generalize in a non-trivial manner to the trigonometric case the expressions found previously in the rational case. We also show that generically all scalar products can be expressed in a form which is similar to - although more cumbersome than - the well-known Slavnov determinant representation for the scalar products of the Bethe states of the periodic chain. Considering a special choice of the boundary parameters relevant in the thermodynamic limit to describe the half infinite chain with a general boundary, we particularize these representations to the case of one of the two states being an eigenstate. We obtain simplified formulas that should be of direct use to compute the form factors and correlation functions of this model.
55 pages
Databáze: OpenAIRE