Continuous Dependence on Initial Data in Fluid–Structure Motions
Autor: | Marcello Guidorzi, Giovanna Guidoboni, Mariarosaria Padula |
---|---|
Rok vydání: | 2011 |
Předmět: |
Hopf solutions
Applied Mathematics Mathematical analysis Structure (category theory) Continuous dependence Free boundary Eulerian path Condensed Matter Physics Domain (mathematical analysis) Computational Mathematics symbols.namesake symbols A priori and a posteriori Uniqueness Interaction problem Mathematical Physics Mathematics |
Zdroj: | Journal of Mathematical Fluid Mechanics. 14:1-32 |
ISSN: | 1422-6952 1422-6928 |
DOI: | 10.1007/s00021-010-0031-0 |
Popis: | We prove a continuous dependence theorem for weak solutions of equations governing a fluid–structure interaction problem in two spatial dimensions. The proof is based on a priori estimates which, in particular, convey uniqueness of weak solutions. The estimates are obtained using Eulerian coordinates, without remapping the problem into a fixed domain. |
Databáze: | OpenAIRE |
Externí odkaz: |