Recent Advancements in Study of Effects of Nano/Micro Additives on Solid Propellants Combustion by Means of the Data Science Methods
Autor: | Darya A. Anufrieva, Charlie Oommen, Rajaghatta Sundararam Bharath, Victor S. Abrukov, Nichith Chandrasekaran, V. R. Sanalkumar, Alexander N. Lukin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Propellant
021110 strategic defence & security studies Computational model Materials science Artificial neural network Mechanical Engineering General Chemical Engineering Materials Research Centre 0211 other engineering and technologies Biomedical Engineering Aerospace Engineering(Formerly Aeronautical Engineering) General Physics and Astronomy Experimental data 02 engineering and technology Combustion Data science Computer Science Applications Particle Particle size Electrical and Electronic Engineering Solid-fuel rocket Physics::Chemical Physics |
Popis: | The efforts of Russian-Indian research team for application of the data science methods, in particular, artificial neural networks for development of the multi-factor computational models for studying effects of additive’s properties on the solid rocket propellants combustion are presented. The possibilities of the artificial neural networks (ANN) application in the generalisation of the connections between the variables of combustion experiments as well as in forecasting of “new experimental results” are demonstrated. The effect of particle size of catalyst, oxidizer surface area and kinetic parameters like activation energy and heat release on the final ballistic property of AP-HTPB based propellant composition has been modelled using ANN methods. The validated ANN models can predict many unexplored regimes, like pressures, particle sizes of oxidiser, for which experimental data are not available. Some of the regularly measured kinetic parameters extracted from non-combustion conditions could be related to properties at combustion conditions. Results predicted are within desirable limits accepted in combustion conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |