Noncrossing partitions and Bruhat order

Autor: Thomas Gobet, Nathan Williams
Rok vydání: 2016
Předmět:
Zdroj: European Journal of Combinatorics. 53:8-34
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2015.10.007
Popis: We prove that the restriction of Bruhat order to type A noncrossing partitions for the Coxeter element c = s 1 s 2 ? s n defines a distributive lattice isomorphic to the order ideals of the root poset ordered by inclusion. Motivated by the base change from the graphical basis of the Temperley-Lieb algebra to the image of the simple elements of the dual braid monoid, we extend this bijection to other Coxeter elements using certain canonical factorizations. In particular, we introduce a new set of vectors counted by the Catalan numbers and give new bijections-fixing each reflection-between noncrossing partitions associated to distinct Coxeter elements.
Databáze: OpenAIRE