Popis: |
In sonoporation-based macromolecular delivery, repetitive microbubble cavitation in the bloodstream results in repeated sonoporation of cells or sonoporation of non-sonoporated neighboring cells (i.e., adjacent to the sonoporated host cells). The resealing and recovery capabilities of these two types of sonoporated cells affect the efficiency and biosafety of sonoporation-based delivery. Therefore, an improved understanding of the preservation of viability in these sonoporated cells is necessary. Using a customized platform for single-pulse ultrasound exposure (pulse length 13.33 μs, peak negative pressure 0.40 MPa, frequency 1.5 MHz) and real-time recording of membrane perforation and intracellular calcium fluctuations (using propidium iodide and Fluo-4 fluorescent probes, respectively), spatiotemporally controlled sonoporation was performed to administer first and second single-site sonoporations of a single cell or single-site sonoporation of a neighboring cell. Two distinct intracellular calcium changes, reversible and irreversible calcium fluctuations, were identified in cells undergoing repeat reversible sonoporation and in neighboring cells undergoing reversible sonoporation. In addition to an increased proportion of reversible calcium fluctuations that occurred with repeated sonoporation compared with that in the initial sonoporation, repeated sonoporation resulted in significantly shorter calcium fluctuation durations and faster membrane resealing than that produced by initial sonoporation. Similarly, compared with those in sonoporated host cells, the intracellular calcium fluctuation recovery and membrane perforation resealing times were significantly shorter in sonoporated neighboring cells. These results demonstrated that the function recovery and membrane resealing capabilities after a second sonoporation or sonoporation of neighboring cells were potentiated in the short term. This could aid in sustaining the long-term viability of sonoporated cells, therefore improving delivery efficiency and biosafety. This investigation provides new insight into the resealing and recovery capabilities in re-sonoporation of sonoporated cells and sonoporation of neighboring cells and can help develop safe and efficient strategies for sonoporation-based drug delivery. |