Fundamental limitation of electrocatalytic methane conversion to methanol
Autor: | Per Simmendefeldt Schmidt, Kristian Sommer Thygesen, Logi Arnarson, Mohnish Pandey, Ifan E. L. Stephens, Jan Rossmeisl, Alexander Bagger |
---|---|
Rok vydání: | 2018 |
Předmět: |
Materials science
Oxygen evolution General Physics and Astronomy chemistry.chemical_element 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Oxygen Methane 0104 chemical sciences Catalysis chemistry.chemical_compound chemistry Chemical physics Methanol Physical and Theoretical Chemistry 0210 nano-technology Selectivity MXenes Oxygen binding |
Zdroj: | Arnarson, L, Schmidt, P S, Pandey, M, Bagger, A, Thygesen, K S, Stephens, I E L & Rossmeisl, J 2018, ' Fundamental limitation of electrocatalytic methane conversion to methanol ', Physical Chemistry Chemical Physics, vol. 20, no. 16, pp. 11152-11159 . https://doi.org/10.1039/c8cp01476k |
ISSN: | 1463-9084 1463-9076 |
Popis: | The electrochemical oxidation of methane to methanol at remote oil fields where methane is flared is the ultimate solution to harness this valuable energy resource. In this study we identify a fundamental surface catalytic limitation of this process in terms of a compromise between selectivity and activity, as oxygen evolution is a competing reaction. By investigating two classes of materials, rutile oxides and two-dimensional transition metal nitrides and carbides (MXenes), we find a linear relationship between the energy needed to activate methane, i.e. to break the first C-H bond, and oxygen binding energies on the surface. Based on a simple kinetic model we can conclude that in order to obtain sufficient activity oxygen has to bind weakly to the surface but there is an upper limit to retain selectivity. Few potentially interesting candidates are found but this relatively simple description enables future large scale screening studies for more optimal candidates. |
Databáze: | OpenAIRE |
Externí odkaz: |