The Smith normal form of a specialized Giambelli-type matrix

Autor: Matthew H.Y. Xie, Alice L. L. Gao, Arthur L. B. Yang
Rok vydání: 2018
Předmět:
Zdroj: Advances in Applied Mathematics. 92:1-16
ISSN: 0196-8858
DOI: 10.1016/j.aam.2017.06.003
Popis: In the study of determinant formulas for Schur functions, Hamel and Goulden introduced a class of Giambelli-type matrices with respect to outside decompositions of partition diagrams, which unify the Jacobi-Trudi matrices, the Giambelli matrices and the Lascoux-Pragacz matrices. Stanley determined the Smith normal form of a specialized Jacobi-Trudi matrix. Motivated by Stanley's work, we obtain the Smith normal form of a specialized Giambelli matrix and a specialized Lascoux-Pragacz matrix. Furthermore, we show that, for a given partition, the Smith normal form of any specialized Giambelli-type matrix can be obtained from that of the corresponding specialization of the classical Giambelli matrix by a sequence of stabilization operations.
15 pages
Databáze: OpenAIRE