Engineering toughening mechanisms in architectured ceramic-based bioinspired materials
Autor: | H. Yazdani Sarvestani, Amirmohammad Rahimizadeh, Larry Lessard, J. Barroeta Robles, Behnam Ashrafi, David Backman, L. Li |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Toughness
Digital image correlation Materials science 02 engineering and technology 010402 general chemistry 01 natural sciences Brittleness lcsh:TA401-492 digital image correlation General Materials Science dynamic toughening mechanisms Ceramic Composite material bioinspired materials Mechanical Engineering architectured ceramics Fracture mechanics 021001 nanoscience & nanotechnology 0104 chemical sciences computational model Compressive strength Deformation mechanism Mechanics of Materials visual_art Displacement field visual_art.visual_art_medium lcsh:Materials of engineering and construction. Mechanics of materials 0210 nano-technology |
Zdroj: | Materials & Design, Vol 198, Iss, Pp 109375-(2021) |
Popis: | Ceramics offer many attractive properties including low-density, high compressive strength, remarkable thermal stability, and high oxidation/corrosion resistance. However, these materials suffer from brittleness, which substantially limits the range of their applications, where high toughness is required. This investigation draws inspiration from a concept of architectures with three-dimensional (3D) networks of weak interfaces targeting high toughness ceramics. In this study, a comprehensive method combining an advanced computational model with 3D digital image correlation (DIC) was developed to engineer bioinspired multilayered architectured ceramics and assesses their toughening and deformation mechanisms when subjected to a low-velocity impact load regime. A complete finite element (FE) analysis was conducted to precisely evaluate the crack growth and displacement field of the architectured ceramics and is compared to those of plain ceramics. The damage and displacement evolution results from FE analysis and experimental testing revealed that the primary source of toughening of the architectured ceramic systems is extrinsic, resulting from extensive crack deflection and delamination. Crack propagation along an irregular long path at the weak interfaces of architectured layers increased the toughness of the plain ceramics by two orders of magnitude. Based on the DIC data, both extrinsic and intrinsic toughening mechanisms were captured: sliding of the tiles in the architectured ceramics and channel plastic deformation in adhesive interlayers, respectively. |
Databáze: | OpenAIRE |
Externí odkaz: |